• Popular
    • Medicine
    • Radiology
    • Cardiology
    • Surgery
    • Nanomedicine
    • Military Medicine
    • Rehab
  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS
  • Submit PR
  • Log in
Medgadget
Medgadget
  • Popular
    • Medicine
      Nanopore Sensor to Study Protein Aggregation in Neurodegeneration

      Nanopore Sensor to Study Protein Aggregation in Neurodegeneration

      Biobots Use Optogenetic Muscle Actuators for Movement

      Biobots Use Optogenetic Muscle Actuators for Movement

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Medgadget Visits Healthcareᐩ Expo Taiwan

      Medgadget Visits Healthcareᐩ Expo Taiwan

    • Radiology
      Ultrasound Tornado Rapidly Disrupts Blood Clots

      Ultrasound Tornado Rapidly Disrupts Blood Clots

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Fluorescence Imaging System Illuminates Tumor Depth

      Fluorescence Imaging System Illuminates Tumor Depth

      Soft Robot Grows Like a Plant to Travel Through Tight Spaces

      Soft Robot Grows Like a Plant to Travel Through Tight Spaces

    • Cardiology
      Belt Monitors Heart Failure Patients

      Belt Monitors Heart Failure Patients

      Camera Measures Blood Pressure with Quick Look

      Camera Measures Blood Pressure with Quick Look

      Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

      Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

    • Surgery
      Biobots Use Optogenetic Muscle Actuators for Movement

      Biobots Use Optogenetic Muscle Actuators for Movement

      Implantable Device Adheres to Muscle, Treats Atrophy

      Implantable Device Adheres to Muscle, Treats Atrophy

      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

      Electrospun Construct Mimics Elasticity of Blood Vessels

      Electrospun Construct Mimics Elasticity of Blood Vessels

    • Nanomedicine
      Extra Hot Nanoparticles for Cancer Therapy

      Extra Hot Nanoparticles for Cancer Therapy

      Making Tumors Tastier for the Immune System

      Making Tumors Tastier for the Immune System

      Improved Membrane Coating for Anti-Cancer Nanoparticles

      Improved Membrane Coating for Anti-Cancer Nanoparticles

      Magnetic Bacteria Target Tumors

      Magnetic Bacteria Target Tumors

    • Military Medicine
      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fabric Makes Electricity from Movement to Power Wearables

      Fabric Makes Electricity from Movement to Power Wearables

      Wearable Uses Microneedles to Track Metabolism

      Wearable Uses Microneedles to Track Metabolism

    • Rehab
      Smart Walking Stick for Visually Impaired People

      Smart Walking Stick for Visually Impaired People

      Implantable Device Adheres to Muscle, Treats Atrophy

      Implantable Device Adheres to Muscle, Treats Atrophy

      Non-Invasive Spinal Modulation for Cerebral Palsy

      Non-Invasive Spinal Modulation for Cerebral Palsy

      Implanted Magnets for Prosthetic Control

      Implanted Magnets for Prosthetic Control

  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Log in
  • Submit PR
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS

Hydrogel Scaffold Makes a Living Electrode

January 18th, 2023 Conn Hastings Materials, Neurology, Neurosurgery

A team of researchers at the Harvard Wyss Institute have developed a soft, hydrogel scaffold that can function as a living electrode for brain-computer interface applications. The researchers used electrically conductive materials and created a porous and flexible scaffold using a freeze-drying process. They then seeded the scaffold with human neural progenitor cells (NPCs) and cultured the scaffolds for extended periods, prompting the cells to differentiate into a variety of neurons and astrocytes. The researchers hope that the resulting ‘living electrode’ could be useful for brain-computer interfaces, as its soft and flexible nature will help it to conform with soft neural tissues and its cellular cargo will help to enhance its biocompatibility and potential efficacy.

The scaffold consists of a soft hydrogel (gray) that contains carbon nanotubes (blue) and graphene flakes (red) as conductive materials to transmit electrical impulses throughout the scaffold. Credit: Wyss Institute at Harvard University

Brain-computer interfaces hold enormous promise in unlocking therapeutic outcomes that would have seemed like science fiction just a few short years ago. From controlling wheelchairs with the mind to restoring sight to the blind, the opportunities in enhancing patient well-being are huge. However, the technology still has a way to go and on a first look, machines and the human body are not a match made in heaven. The interfacing electrodes in such systems are typically made using metal and are rigid, both of which do not assist the technology in non-invasively interacting with delicate neural tissues.

When grown on a viscoelastic hydrogel scaffold, human neural progenitor cells differentiate into multiple cell types that are found in the human brain, including oligodendrocytes (green) that produce myelin (white). Credit: Wyss Institute at Harvard University

These researchers set out to create an electrode that is not just flexible, but also covered in living neural cells, and is based on the concept that living tissue is likely to be the most biocompatible material to interface with other living tissue. The researchers also conceived the cell-laden material as delivering electrical impulses more naturally through cell-cell contact.

“This conductive, hydrogel-based scaffold has great potential,” said Christina Tringides, a researcher involved in the study. “Not only can it be used to study the formation of human neural networks in vitro, it could also enable the creation of implantable biohybrid BCIs that more seamlessly integrate with a patient’s brain tissue, improving their performance and decreasing risk of injury.”

To create their scaffolds, the researchers used an alginate hydrogel and added some carbon nano-materials for electrical conductivity before a final freeze-drying step. The freeze drying process creates ice-crystals in the material that then sublime during freeze-drying, leaving many pores into which cells can enter and live. They seeded the scaffolds with neural progenitor cells, which then differentiated into more mature neural cells during an extended culture period.

“The successful differentiation of human NPCs into multiple types of brain cells within our scaffolds is confirmation that the conductive hydrogel provides them the right kind of environment in which to grow in vitro,” said Dave Mooney, another researcher involved in the study. “It was especially exciting to see myelination on the neurons’ axons, as that has been an ongoing challenge to replicate in living models of the brain.”

Study in journal Advanced Healthcare Materials: Tunable Conductive Hydrogel Scaffolds for Neural Cell Differentiation

Via: Harvard Wyss Institute

Conn Hastings

Conn Hastings received a PhD from the Royal College of Surgeons in Ireland for his work in drug delivery, investigating the potential of injectable hydrogels to deliver cells, drugs and nanoparticles in the treatment of cancer and cardiovascular diseases. After achieving his PhD and completing a year of postdoctoral research, Conn pursued a career in academic publishing, before becoming a full-time science writer and editor, combining his experience within the biomedical sciences with his passion for written communication.

Sponsored
New Clarius Power Fan HD3 Delivers a First for Handheld Ultrasound: Continuous Scanning

New Clarius Power Fan HD3 Delivers a First for Handheld Ultrasound: Continuous Scanning

Fluidx Unveils New Embolic for Neurovascular Use

Fluidx Unveils New Embolic for Neurovascular Use

Annalise.ai and Nuance Communications (a Microsoft Company) Announce Key Partnership to Improve Patient Outcomes with Workflow-Integrated AI

Annalise.ai and Nuance Communications (a Microsoft Company) Announce Key Partnership to Improve Patient Outcomes with Workflow-Integrated AI

PT Genie Unveils New Brand Identity Reflecting Company’s Transformation and Focus on the Global Future of AI and Machine Learning in Digital Healthcare

Clarius Marketplace Unlocks the Power of AI Innovation for Ultrasound Imaging

Clarius Marketplace Unlocks the Power of AI Innovation for Ultrasound Imaging

interviews & reviews
Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

Exciting Medtech at the Healthcareᐩ Expo Taiwan

Exciting Medtech at the Healthcareᐩ Expo Taiwan

Medgadget Visits Healthcareᐩ Expo Taiwan

Medgadget Visits Healthcareᐩ Expo Taiwan

Diabetes Management Tech for Type II patients: Interview with Jeffrey Brewer, CEO of Bigfoot Biomedical

Diabetes Management Tech for Type II patients: Interview with Jeffrey Brewer, CEO of Bigfoot Biomedical

Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

In-Office Pediatric Ear Tube Procedures: Interview with Preceptis Medical's Greg Mielke

In-Office Pediatric Ear Tube Procedures: Interview with Preceptis Medical's Greg Mielke

Symani Microsurgical Robotic System: Interview with Mark Toland, CEO of Medical Microinstruments

Symani Microsurgical Robotic System: Interview with Mark Toland, CEO of Medical Microinstruments

  • Subscribe
  • Contact us
  • Submit
  • About
  • Back to top
Medgadget

Medical technologies transform the world! Join us and see the progress in real time. At Medgadget, we report the latest technology news, interview leaders in the field, and file dispatches from medical events around the world since 2004.

  • About
  • Editorial policies
  • Contact
  • Terms of Service
  • Privacy
  • Submit press release
  • Advertise
© Medgadget, Inc. All rights reserved. | The Medical Revolution Will Be Blogged.
Please support this website by adding us to your whitelist in your ad blocker. Ads are what helps us bring you premium content! Thank you!
Posting....
  • Facebook
  • Twitter
  • LinkedIn
  • Reddit
  • Email