• Popular
    • Medicine
    • Radiology
    • Cardiology
    • Surgery
    • Nanomedicine
    • Military Medicine
    • Rehab
  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS
  • Submit PR
  • Log in
Medgadget
Medgadget
  • Popular
    • Medicine
      Nanoparticles Get Lymphatic Vessels Pumping

      Nanoparticles Get Lymphatic Vessels Pumping

      Levels Is Making Metabolism and Blood Glucose Tracking Accessible To Everyone

      Levels Is Making Metabolism and Blood Glucose Tracking Accessible To Everyone

      CRISPR Combined with Glowing Proteins for Viral Detection

      CRISPR Combined with Glowing Proteins for Viral Detection

      Biomimetic Construct Models Burn Injuries

      Biomimetic Construct Models Burn Injuries

    • Radiology
      Imaging Technique Reveals Contraction Patterns During Labor

      Imaging Technique Reveals Contraction Patterns During Labor

      Moving Cells Using Ultrasound

      Moving Cells Using Ultrasound

      Ultrasound Catheter to Treat Hypertension

      Ultrasound Catheter to Treat Hypertension

      Antibacterial Smart Sutures Visible in CT Scans

      Antibacterial Smart Sutures Visible in CT Scans

    • Cardiology
      Scientists Grow Electrodes Inside The Body

      Scientists Grow Electrodes Inside The Body

      Patient-Specific Soft Robotic Heart Replicas for Treatment Planning

      Patient-Specific Soft Robotic Heart Replicas for Treatment Planning

      Tiny Patch for Cardiac Ultrasound Imaging

      Tiny Patch for Cardiac Ultrasound Imaging

      Belt Monitors Heart Failure Patients

      Belt Monitors Heart Failure Patients

    • Surgery
      Nanoparticles Get Lymphatic Vessels Pumping

      Nanoparticles Get Lymphatic Vessels Pumping

      Biomimetic Construct Models Burn Injuries

      Biomimetic Construct Models Burn Injuries

      Exclusive Look at HandX Robotic-Assisted Surgical Device from Human Xtensions

      Exclusive Look at HandX Robotic-Assisted Surgical Device from Human Xtensions

      Self-Assembling Peptides as a Bioink

      Self-Assembling Peptides as a Bioink

    • Nanomedicine
      Nanoparticles Get Lymphatic Vessels Pumping

      Nanoparticles Get Lymphatic Vessels Pumping

      Bottlebrush Particle for Synergistic Drug Combinations

      Bottlebrush Particle for Synergistic Drug Combinations

      Extra Hot Nanoparticles for Cancer Therapy

      Extra Hot Nanoparticles for Cancer Therapy

      Making Tumors Tastier for the Immune System

      Making Tumors Tastier for the Immune System

    • Military Medicine
      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fabric Makes Electricity from Movement to Power Wearables

      Fabric Makes Electricity from Movement to Power Wearables

      Wearable Uses Microneedles to Track Metabolism

      Wearable Uses Microneedles to Track Metabolism

    • Rehab
      Empowering Stroke Survivors: Interview with Kirsten Carroll, CEO at Kandu Health

      Empowering Stroke Survivors: Interview with Kirsten Carroll, CEO at Kandu Health

      Smart Walking Stick for Visually Impaired People

      Smart Walking Stick for Visually Impaired People

      Implantable Device Adheres to Muscle, Treats Atrophy

      Implantable Device Adheres to Muscle, Treats Atrophy

      Non-Invasive Spinal Modulation for Cerebral Palsy

      Non-Invasive Spinal Modulation for Cerebral Palsy

  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Log in
  • Submit PR
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS

Pancreatic Organoids Grown Inside Synthetic Gel

September 22nd, 2021 Conn Hastings Materials, Medicine, Oncology

A team at MIT has developed a technique to grow organoids, both from healthy and cancerous pancreatic tissue, using a synthetic gel that predictably mimics the pancreatic extracellular environment. Compared with naturally derived materials, the synthetic gel is consistent from batch to batch, meaning that it leads to more reproducible and predictable results when growing organoids. The MIT researchers hope that the technology could advance organoid research, both pancreatic and otherwise.

Cancerous pancreatic tissues are not easy to grow and study in the lab, as they lose their cancerous characteristics relatively quickly when cultured. However, given the particularly poor prognosis for pancreatic cancer, tissue culture models that effectively replicate this cancer in the lab would be very useful for gaining a mechanistic understanding of the cancer and identifying new treatments.

Organoids are an attractive way of studying tissues. With their self-assembly and three-dimensional shape, they resemble tissues in the body much better than simple cell monolayers grown on tissue culture plastic. However, organoids are not necessarily easy to grow.

Controlling the environment of such tissue samples is paramount, particularly if the results are to be reliable and reproducible. However, the natural materials used to mimic the tissue microenvironment for such tissue culture systems are often derived from mouse tumors, and can contain undesirable substances. They can also vary from batch to batch, making repeatable experiments difficult.

“The issue of reproducibility is a major one,” said Linda Griffith, a researcher involved in the study. “The research community has been looking for ways to do more methodical cultures of these kinds of organoids, and especially to control the microenvironment.” The gel developed by the researchers is based on polyethylene glycol (PEG), which is commonly used in medicine, mixed with extracellular matrix components, such as integrins that allow cells in the gel to adhere to it.

So far, the MIT team tested the new technique using pancreatic cells from mice, both cancerous and healthy, and were able to grow pancreatic organoids using either type of cell. The technique may allow researchers to study pancreatic cancer in more detail, and test new treatments in a more realistic cancer environment.

Supportive cells grown using the new system, including fibroblasts (green) and macrophages (orange) surrounding pancreatic organoids. Credit: Joanna Kelly and Christopher Below

Study in Nature Materials: A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids

Via: MIT

Conn Hastings

Conn Hastings received a PhD from the Royal College of Surgeons in Ireland for his work in drug delivery, investigating the potential of injectable hydrogels to deliver cells, drugs and nanoparticles in the treatment of cancer and cardiovascular diseases. After achieving his PhD and completing a year of postdoctoral research, Conn pursued a career in academic publishing, before becoming a full-time science writer and editor, combining his experience within the biomedical sciences with his passion for written communication.

Sponsored
Venture builder BHV Partners launches Conus Airway to improve anaesthesia  and respiratory surgery

Venture builder BHV Partners launches Conus Airway to improve anaesthesia and respiratory surgery

FDA Expands Indications for Use of FibroScan® for Comprehensive Liver Management

FDA Expands Indications for Use of FibroScan® for Comprehensive Liver Management

machineMD and Varjo revolutionize the diagnosis of brain disorders with a VR-based eye-tracking solution 

machineMD and Varjo revolutionize the diagnosis of brain disorders with a VR-based eye-tracking solution 

Ax-Surgi Hemostat gets FDA Clearance for Surgical Bleeding Control

Ax-Surgi Hemostat gets FDA Clearance for Surgical Bleeding Control

Clarius Report Finds 85% of Clinicians Believe Ultrasound Leads to Better Patient Outcomes

Clarius Report Finds 85% of Clinicians Believe Ultrasound Leads to Better Patient Outcomes

interviews & reviews
Levels Is Making Metabolism and Blood Glucose Tracking Accessible To Everyone

Levels Is Making Metabolism and Blood Glucose Tracking Accessible To Everyone

Imagene Profiles Cancer Biomarkers in Real Time

Imagene Profiles Cancer Biomarkers in Real Time

Empowering Stroke Survivors: Interview with Kirsten Carroll, CEO at Kandu Health

Empowering Stroke Survivors: Interview with Kirsten Carroll, CEO at Kandu Health

Alpha TAU Killing Tumors With Highly Targeted Alpha Radiation

Alpha TAU Killing Tumors With Highly Targeted Alpha Radiation

Neuroimmune Modulation for Inflammatory Disease: Interview with Dr. Simhambhatla, President and CEO of SetPoint Medical

Neuroimmune Modulation for Inflammatory Disease: Interview with Dr. Simhambhatla, President and CEO of SetPoint Medical

Exclusive Look at HandX Robotic-Assisted Surgical Device from Human Xtensions

Exclusive Look at HandX Robotic-Assisted Surgical Device from Human Xtensions

Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

  • Subscribe
  • Contact us
  • Submit
  • About
  • Back to top
Medgadget

Medical technologies transform the world! Join us and see the progress in real time. At Medgadget, we report the latest technology news, interview leaders in the field, and file dispatches from medical events around the world since 2004.

  • About
  • Editorial policies
  • Contact
  • Terms of Service
  • Privacy
  • Submit press release
  • Advertise
© Medgadget, Inc. All rights reserved. | The Medical Revolution Will Be Blogged.
Please support this website by adding us to your whitelist in your ad blocker. Ads are what helps us bring you premium content! Thank you!
  • Facebook
  • Twitter
  • LinkedIn
  • Reddit
  • Email