• Popular
    • Medicine
    • Radiology
    • Cardiology
    • Surgery
    • Nanomedicine
    • Military Medicine
    • Rehab
  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS
  • Submit PR
  • Log in
Medgadget
Medgadget
  • Popular
    • Medicine
      Biobots Use Optogenetic Muscle Actuators for Movement

      Biobots Use Optogenetic Muscle Actuators for Movement

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Medgadget Visits Healthcareᐩ Expo Taiwan

      Medgadget Visits Healthcareᐩ Expo Taiwan

      Camera Measures Blood Pressure with Quick Look

      Camera Measures Blood Pressure with Quick Look

    • Radiology
      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Fluorescence Imaging System Illuminates Tumor Depth

      Fluorescence Imaging System Illuminates Tumor Depth

      Soft Robot Grows Like a Plant to Travel Through Tight Spaces

      Soft Robot Grows Like a Plant to Travel Through Tight Spaces

      Mining Ultrasound Data to Improve Liver Diagnostics: Interview with Beth Rogozinski, CEO at Oncoustics

      Mining Ultrasound Data to Improve Liver Diagnostics: Interview with Beth Rogozinski, CEO at Oncoustics

    • Cardiology
      Belt Monitors Heart Failure Patients

      Belt Monitors Heart Failure Patients

      Camera Measures Blood Pressure with Quick Look

      Camera Measures Blood Pressure with Quick Look

      Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

      Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

    • Surgery
      Biobots Use Optogenetic Muscle Actuators for Movement

      Biobots Use Optogenetic Muscle Actuators for Movement

      Implantable Device Adheres to Muscle, Treats Atrophy

      Implantable Device Adheres to Muscle, Treats Atrophy

      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

      Electrospun Construct Mimics Elasticity of Blood Vessels

      Electrospun Construct Mimics Elasticity of Blood Vessels

    • Nanomedicine
      Extra Hot Nanoparticles for Cancer Therapy

      Extra Hot Nanoparticles for Cancer Therapy

      Making Tumors Tastier for the Immune System

      Making Tumors Tastier for the Immune System

      Improved Membrane Coating for Anti-Cancer Nanoparticles

      Improved Membrane Coating for Anti-Cancer Nanoparticles

      Magnetic Bacteria Target Tumors

      Magnetic Bacteria Target Tumors

    • Military Medicine
      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fabric Makes Electricity from Movement to Power Wearables

      Fabric Makes Electricity from Movement to Power Wearables

      Wearable Uses Microneedles to Track Metabolism

      Wearable Uses Microneedles to Track Metabolism

    • Rehab
      Implantable Device Adheres to Muscle, Treats Atrophy

      Implantable Device Adheres to Muscle, Treats Atrophy

      Non-Invasive Spinal Modulation for Cerebral Palsy

      Non-Invasive Spinal Modulation for Cerebral Palsy

      Implanted Magnets for Prosthetic Control

      Implanted Magnets for Prosthetic Control

      FDA-Approved At-Home Spirometer: Interview with Charvi Shetty, Co-Founder and CEO at Aluna

      FDA-Approved At-Home Spirometer: Interview with Charvi Shetty, Co-Founder and CEO at Aluna

  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Log in
  • Submit PR
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS

Genomic Profiling for Precision Medicine: Interview with David Spetzler, Caris Life Sciences

January 28th, 2020 Conn Hastings Exclusive, Genetics, Informatics, Oncology, Pathology

Caris Life Sciences, a Dallas-based innovator in molecular science focused on fulfilling the promise of precision medicine, has developed the MI Genomic Profiling Similarity (GPS) score to compare the molecular characteristics of specific tumors against those in the Caris database. This allows clinicians to identify the molecular subtype of their patients’ tumors and guide personalized treatment. The system is driven by machine learning algorithms and is envisaged as being particularly useful in guiding the treatment of cancers in cases where there is ambiguity about the tissue of origin and in other atypical or difficult to treat cancers.

Personalized medicine holds enormous potential in improving patient outcomes, but has been limited by the complexity of contextualizing the molecular or genetic signatures of diseased tissues, such as tumors. While modern experimental techniques can rapidly generate enormous amounts of molecular data for a specific patient sample, these data are meaningless unless interpreted correctly and compared with other molecular signatures to provide appropriate context.            

Artificial intelligence techniques are well-suited to this task, and AI solutions may be the key to unlocking the potential of personalized medicine. In this vein, Caris Life Sciences has used machine learning techniques to develop the MI GPS score that allows clinicians to compare the molecular characteristics of their patients’ tumors with thousands of others in the Caris database.

The system exploits a substantial database of molecular data with associated clinical outcomes, and machine learning algorithms help to identify molecular patterns associated with specific cancer subtypes and treatment outcomes. Using Caris Molecular Intelligence, the company is able to assess DNA across a 592-DNA gene panel, gene fusions, RNA splice variants, gene expression and proteins. 

Caris has reported that the MI GPS score demonstrated over 95% accuracy in classifying tumors from a total of 55,780 samples, and indicated a tissue of origin for the vast majority of tested samples for which a tissue of origin was uncertain or unknown.

Medgadget had the opportunity to talk to David Spetzler, President and Chief Scientific Officer at Caris Life Sciences, about the company’s advances in this field.

Conn Hastings, Medgadget: How did you get interested and involved in precision medicine and artificial intelligence?

David Spetzler, Caris Life Sciences: I have always been interested in science. I worked in a neurobiology lab when I was 14 and, before Caris, I was a member of the research faculty at Arizona State University, where I studied mathematics and molecular cellular biology with a focus on the application of novel analytic methods to complex problems. I joined Caris in 2009 as a bioinformatics scientist to analyze the incredible data set that Caris was generating. The combination of mathematics and biology have created incredible opportunities to advance our understanding of cancer and AI is a natural extension of that, enabled by advances in computing hardware.

The best way to help people with cancer is to find it early enough that it’s curable. To that end, I am passionate about understanding the molecular drivers of disease so that we can identify optimal treatment strategies for each patient, and I look forward to continuing to develop early cancer detection assays, discover novel drug targets and characterize protein differences in each patient’s tumor. Precision medicine improves the lives of people living with cancer by finding therapies more likely to work and reducing the risks of patients receiving unnecessary, expensive therapies that don’t impact the course of their disease. This is what drives my colleagues and me at Caris.  

Medgadget: What are the advantages of precision medicine?   

Spetzler: Precision medicine and next generation sequencing can help to match patients to the appropriate therapies and can determine if a tumor will be more likely to respond to a treatment before it’s prescribed, allowing for more personalized treatments and enabling patients to realize the fullest potential of targeted cancer therapies.

Personalized medicine can also help to improve health outcomes and lessen spending by patients, hospitals and insurance companies, particularly since the average cost of treatment with modern cancer therapies averages about $250,000 per patient. Next generation sequencing allows Caris to rapidly examine and more broadly detect DNA mutations, copy number variations and gene fusions across the genome and potentially change the way clinicians approach treatment for their patients.

Medgadget: How close are we to using precision medicine routinely for every patient?

Spetzler: Right now, treating oncologists routinely order molecular profiling for only 15% of their patients, meaning that 85% are not receiving the testing they need that would make their treatment consistent with National Comprehensive Cancer Network (NCCN) guidelines. Getting patients on the appropriate treatments is a critically important step since it directly correlates to improvements in overall survival and can have a significant impact on the cost of their therapy.

So, while these tests are readily available and recommended for routine use by NCCN, utilization is still a challenge. Caris is working diligently with leading institutions to make these tests available for patients living with a cancer diagnosis, and we are hopeful that uptake continues to increase so that more people are receiving the best possible treatments as early as possible in the course of their disease.  

Medgadget: So, what is the MI GPS score, and how does it work? How has it helped with patient treatment so far?

Spetzler: MI GPS Score is an AI-driven tumor type biology similarity score that uses more than 6,500 mathematical models in the machine learning algorithm to compare molecular characteristics of a patient’s tumor against Caris’ extensive database to provide new insights into the molecular subtype of cancer of unknown primary (CUP) cases, atypical clinical presentation cases and other difficult to treat cancer cases to help guide treatment decisions.

If an oncologist is unable to identify the tumor type or genetic lineage of a patient’s cancer, they can send a tumor sample to Caris for evaluation by our team of expert pathologists. The reports our pathologists develop can be used by physicians to make more informed treatment choices.

Medgadget: Please explain the role of artificial intelligence in the development of the MI GPS score.

Spetzler: The behavior of cells is driven by changes in their molecular system, which is one of, if not the most, complex system there is, with literally hundreds of trillions of different interactions occurring per second. The complexity of the system is too great for humans to decipher alone, hence the need for AI and machine learning systems. Using the power of DEAN (Deliberation Analytics) artificial intelligence and machine learning, Caris can provide oncologists with thorough genomic and molecular analysis classification. The combination of AI and human intelligence provides the most comprehensive analysis available today to characterize a patient’s tumor and support treatment decisions.

Medgadget: How do you see this type of technology developing in the next ten years?  

Spetzler: Caris and its partners will continue to accumulate data that informs, expands and refines our existing algorithms so that as the database grows, so do the accuracy and precision of the test results. MI GPS Score is the first of many Caris Molecular Artificial Intelligence offerings that will advance our understanding of cancer and enable better patient care.

We will continue to work to improve healthcare for everyone using our unique and transformative platforms to help patients with cancer and other complex diseases.

Link: Caris Life Sciences

Conn Hastings

Conn Hastings received a PhD from the Royal College of Surgeons in Ireland for his work in drug delivery, investigating the potential of injectable hydrogels to deliver cells, drugs and nanoparticles in the treatment of cancer and cardiovascular diseases. After achieving his PhD and completing a year of postdoctoral research, Conn pursued a career in academic publishing, before becoming a full-time science writer and editor, combining his experience within the biomedical sciences with his passion for written communication.

Sponsored
New Clarius Power Fan HD3 Delivers a First for Handheld Ultrasound: Continuous Scanning

New Clarius Power Fan HD3 Delivers a First for Handheld Ultrasound: Continuous Scanning

Fluidx Unveils New Embolic for Neurovascular Use

Fluidx Unveils New Embolic for Neurovascular Use

Annalise.ai and Nuance Communications (a Microsoft Company) Announce Key Partnership to Improve Patient Outcomes with Workflow-Integrated AI

Annalise.ai and Nuance Communications (a Microsoft Company) Announce Key Partnership to Improve Patient Outcomes with Workflow-Integrated AI

PT Genie Unveils New Brand Identity Reflecting Company’s Transformation and Focus on the Global Future of AI and Machine Learning in Digital Healthcare

Clarius Marketplace Unlocks the Power of AI Innovation for Ultrasound Imaging

Clarius Marketplace Unlocks the Power of AI Innovation for Ultrasound Imaging

interviews & reviews
Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

Exciting Medtech at the Healthcareᐩ Expo Taiwan

Exciting Medtech at the Healthcareᐩ Expo Taiwan

Medgadget Visits Healthcareᐩ Expo Taiwan

Medgadget Visits Healthcareᐩ Expo Taiwan

Diabetes Management Tech for Type II patients: Interview with Jeffrey Brewer, CEO of Bigfoot Biomedical

Diabetes Management Tech for Type II patients: Interview with Jeffrey Brewer, CEO of Bigfoot Biomedical

Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

In-Office Pediatric Ear Tube Procedures: Interview with Preceptis Medical's Greg Mielke

In-Office Pediatric Ear Tube Procedures: Interview with Preceptis Medical's Greg Mielke

Symani Microsurgical Robotic System: Interview with Mark Toland, CEO of Medical Microinstruments

Symani Microsurgical Robotic System: Interview with Mark Toland, CEO of Medical Microinstruments

  • Subscribe
  • Contact us
  • Submit
  • About
  • Back to top
Medgadget

Medical technologies transform the world! Join us and see the progress in real time. At Medgadget, we report the latest technology news, interview leaders in the field, and file dispatches from medical events around the world since 2004.

  • About
  • Editorial policies
  • Contact
  • Terms of Service
  • Privacy
  • Submit press release
  • Advertise
© Medgadget, Inc. All rights reserved. | The Medical Revolution Will Be Blogged.
Please support this website by adding us to your whitelist in your ad blocker. Ads are what helps us bring you premium content! Thank you!
Posting....
  • Facebook
  • Twitter
  • LinkedIn
  • Reddit
  • Email