Scientists at Georgia Institute of Technology and University of California San Francisco have developed a method that improves stochastic optical reconstruction microscopy (STORM), a method that achieves sub-diffraction-limit image resolution, down below 20nm, something thought to be impossible until only a few years ago.
With the new, faster STORM, researchers will be able to look at moving cellular structures in living cells that currently look smudged.
Some details from a Georgia Tech press release:
The previous technology using the single-molecule-switching approach for super-resolution microscopy depends on spreading single molecule images sparsely into many, often thousands of, camera frames. It is extremely limited in its temporal resolution and does not provide the ability to follow dynamic processes in live cells.
“We can now use our discovery using super-resolution microscopy with seconds or even sub-second temporal resolution for a large field of view to follow many more dynamic cellular processes,” said Zhu. “Much of our knowledge of the life of a cell comes from our ability to see the small structures within it.”
Huang noted, “One application, for example, is to investigate how mitochondria, the power house of the cell, interact with other organelles and the cytoskeleton to reshape the structure during the life cycle of the cell.”
Currently, light microscopy, especially in the modern form of fluorescence microscopy, is still used frequently by many biologists. However, the authors say, conventional light microscopy has one major limitation: the inability to resolve two objects closer than half the wavelength of the light because of the phenomenon called diffraction. With diffraction, the images look blurry and overlapped no matter how high the magnification that is used.
“The diffraction limit has long been regarded as one of the fundamental constraints for light microscopy until the recent inventions of super-resolution fluorescence microscopy techniques,” said Zhu. Super-resolution microscopy methods, such as stochastic optical reconstruction microscopy (STORM) or photoactivated localization microscopy (PALM), rely on the ability to record light emission from a single molecule in the sample.
Using probe molecules that can be switched between a visible and an invisible state, STORM/PALM determines the position of each molecule of interest. These positions ultimately define a structure.
Press release: Compressed Sensing Allows Super-Resolution Microscopy Imaging of Live Cell Structures…
Abstract in Nature Methods: Faster STORM using compressed sensing