Being able to easily and predictably grow nerve cells may turn out to be a boon for brain researchers studying possible treatment options for neural diseases.
Next week at the American Chemical Society Meeting in San Diego, scientists from Chalmers University of Technology and the University of Gothenburg in Sweden are planning to present their findings showing how nanocellulose can promote the growth of neural networks. They hope to be able to grow large 3D neural networks to have greater control over their experiments that now often have to be done with tissue harvested from animals.
“This has been a great challenge,” says Paul Gatenholm, Professor of Biopolymer Technology at Chalmers.‟Until recently the cells were dying after a while, since we weren’t able to get them to adhere to the scaffold. But after many experiments we discovered a method to get them to attach to the scaffold by making it more positively charged. Now we have a stable method for cultivating nerve cells on nanocellulose.”
When the nerve cells finally attached to the scaffold they began to develop and generate contacts with one another, so-called synapses. A neural network of hundreds of cells was produced. The researchers can now use electrical impulses and chemical signal substances to generate nerve impulses, that spread through the network in much the same way as they do in the brain. They can also study how nerve cells react with other molecules, such as pharmaceuticals.
The researchers are trying to develop ‟artificial brains”, which may open entirely new possibilities in brain research and health care, and eventually may lead to the development of biocomputers. Initially the group wants to investigate destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer’s disease. For example, they would like to cultivate nerve cells and study how cells react to the patients’ spinal fluid.
In the future this method may be useful for testing various pharmaceutical candidates that could slow down the destruction of synapses. In addition, it could provide a better alternative to experiments on animals within the field of brain research in general.