Researchers at the University of Arizona College of Engineering received a grant to develop a new medical imaging technology to detect tumors and pathogens. The method is based on the terahertz block of the electromagnetic spectrum. The scarcely researched terahertz band lies between microwave and optical and all these spectral frequencies can be used for imaging. Although terahertz radiation can penetrate many different materials, including clothing, but not metal, it does not do ionizing damage to cell tissues and DNA like X-rays.
The custom-made spectral imager will emit electromagnetic radiation and analyze how the spectra are absorbed and reflected by various materials, such as cell tissues and chemical compounds. No instrument with the spectral imager’s proposed capabilities currently exists. It will enable scientists and engineers to expand the frontiers of research in areas such as medical imaging of tumors and pathogens and detection of specific chemicals such as explosives.
Richard Ziolkowski, professor in computer engineering and principal investigator in this project, made the following comments:
“It will be a unique instrument in an area that is really starting to grow. There are jobs now being created in the terahertz area because people are interested in systems such these imaging devices.
You get some depth of penetration with terahertz, for example into skin and through clothes. You can’t do that with visible light. We’ll be sending out these terahertz signals and receiving signals back and trying to interpret them.”
One possible application for a terahertz spectral imager is in skin cancer surgery. Determining the extent of a melanoma can be difficult when using harmful X-rays. Similarly, the instrument development team is interested in using terahertz waves to detect the presence in cells of disease-causing pathogens such as bacteria and viruses. Different bugs have different spectral signatures, Ziolkowski said.
Press release: Grant to Fund Development of New Imaging Equipment
Flashbacks: Terahertz imaging…