Researchers from Columbia Engineering School developed a new method to non-invasively map the electrical activation of the heart. The technique, called Electromechanical Wave Imaging (EWI), uses ultrasound waves to detect very small deformations following the electrical activation of the heart. It can be incorporated into most current ultrasound scanners. Previously these measurements were possible only though invasive electrode contact, or non-invasively but indirectly, through complex mathematical modeling based on remote measurements. The study was published online in the May 9 issue of Proceedings of the National Academy of Sciences.
Using their EWI method, the Columbia Engineering team imaged the heart with ultrasound five times faster than standard echocardiography and mapped the local deformations of the heart with their images. The researchers then looked at small regions of the heart (just a few millimeters squared) and measured how much these regions were stretched or compressed every 2/1000s of a second. This enabled them to precisely identify at what time each region of the heart began to contract, a.k.a the electromechanical activation, in all four chambers of the heart. They compared their maps with the electrical activation sequence and found they were closely correlated, both at the natural rhythm of the heart and when the heart was artificially paced.
Arrhythmias occur when the normal electrical activation sequence in the heart is disrupted and their prevalence is expected to rise, as people live longer. In some cases, effective treatments exist. For example, a pacemaker can be surgically placed or a catheter can be brought into the cardiac chambers and used to burn diseased regions of the heart or pacing leads can be implanted in the heart to bypass the diseased conduction system and replace it by artificial electrical activation. But doctors can’t always tell where to ablate with a catheter or who will benefit from artificial electrical activation. EWI could help determine in advance which patients can benefit from these treatments or identify with more precision which regions of the heart should be ablated. It could also be used to adapt treatment parameters as the patient’s condition evolves.
“Since ultrasound is so safe, portable, and low cost,” added Dr. Konofagou, “we can imagine a future where most physicians can carry a portable ultrasound scanner the size of an iPhone and easily get a map of the activation of the heart during a routine visit.”
Her team has already begun to image patients with arrhythmias and compare their measurements with the gold standard of catheterization and non-contact electrode measurements. If this study is conclusive, they will then move to a larger clinical study.
Press release: Prof. Konofagou Develops Method To Diagnose Arrhythmias…