Researchers from Brown University are working with computer engineers at Argonne National Lab to simulate how blood propagates through the vasculature in the brain. They’re using an IBM Blue Gene/P supercomputer to create simulations that take into account things like the plasticity of individual blood cells.
One part of the study is mapping exactly how red blood cells move through the brain. For example, last year the team used similar modeling to discover that the malaria parasite makes its victims’ red blood cells 50 times stiffer than normal.
Healthy red blood cells are smooth and elastic; they need to squeeze and bend through tiny capillaries to deliver blood to all areas of the brain. But malaria-infected cells stiffen and stick to the walls, creating blockages in arteries and vessels. Malaria victims die because their brain tissues are deprived of oxygen. A more complete picture of how blood moves through the brain would allow doctors to understand the progression of diseases that affect blood flow, like malaria, diabetes and HIV.
"Previous computer models haven’t been able to accurately account for, say, the motion of the blood cells bending or buckling as they ricochet off the walls," said Joe Insley, a principal software developer at Argonne who is working with the team. "This simulation is powerful enough to incorporate that extra level of detail."
Another part of the study seeks to understand the relationship between cerebrospinal fluid and blood flow in the brain. "Blood vessels expand if blood pressure is high; and since they are located between brain tissues, this can put dangerous pressure on the brain," said Leopold Grinberg, a Brown University scientist on the team. In healthy people, spinal fluid can drain to relieve pressure on brain tissues, but occasionally the system breaks down—leaving the brain vulnerable to damage.
"Understanding how the system interacts will allow us to more accurately treat the problem," Grinberg said.
Full story: Blood vessel simulation probes secrets of brain…