Researchers from MIT and Brigham and Women’s Hospital used specially designed nanoparticles to deliver two very different chemo drugs, cisplatin and docetaxel, to prostate cancer cells. Because docetaxel is hydrophobic and cisplatin is hydrophilic encapsulating them in one nanoparticle is a difficult task.
With the researchers’ new technique, called “drug-polymer blending,” drug molecules are hung like pendants from individual units of the polymer, before the units assemble into a polymer nanoparticle. That allows the researchers to precisely control the ratio of drugs loaded into the particle. They can also control the rate at which each drug will be released once it enters a tumor cell.
The new particles offer a much-needed ability to fine-tune drug combinations and personalize treatment for individual patients, said Michael Pishko, professor of chemical engineering at Texas A&M University, who was not involved in this study. “They’re right on the money in terms of what these systems should look like,” he said.
Once the drugs are loaded into the nanoparticle, the researchers add a tag that binds to a molecule called PSMA, which is located on the surfaces of most prostate tumor cells. This tag allows the nanoparticles to go directly to their target, bypassing healthy tissues and potentially reducing the side effects caused by most chemotherapy drugs. That could permit doctors to give much higher doses to a larger number of patients.
The researchers have filed for a patent on the polymer-blending fabrication technique, and are now testing the drug-delivering particles in animals. Once they gather enough animal data, which could take a few years, they hope to begin clinical trials.
Full story: New nanoparticles could improve cancer treatment…