University of Pennsylvania researchers have been developing graphene nanopores that could one day be used as electronic DNA sequencing mechanisms. Because the thickness of graphene sheets is smaller than the distance between base pairs on a DNA molecule, there’s an expectation that graphene can be a potential sequencing platform. The good news is that U Penn researchers already are able to use such nanopores to detect single DNA molecules passing through.
From a press statement by U Penn:
Using electric fields, the tiny DNA strands are pushed through nanoscale-sized, atomically thin pores in a graphene nanopore platform that ultimately may be important for fast electronic sequencing of the four chemical bases of DNA based on their unique electrical signature.
The pores, burned into graphene membranes using electron beam technology, provide Penn physicists with electronic measurements of the translocation of DNA.
The team used a chemical vapor deposition, or CVD, method to grow large flakes of graphene and suspend them over a single micron-sized hole made in silicon nitride. An even smaller hole, the nanopore in the very center of the suspended graphene, was then drilled with an electron beam of a transmission electron microscope, or TEM.
Graphene nanopore devices developed by the Penn team work in a simple manner. The pore divides two chambers of electrolyte solution and researchers apply voltage, which drives ions through the pores. Ion transport is measured as a current flowing from the voltage source. DNA molecules, inserted into the electrolyte, can be driven single file through such nanopores.
As the molecules translocate, they block the flow of ions and are detected as a drop in the measured current. Because the four DNA bases block the current differently, graphene nanopores with sub-nanometer thickness may provide a way to distinguish among bases, realizing a low-cost, high-throughput DNA sequencing technique.
In addition, to increase the robustness of graphene nanopore devices, Penn researchers also deposited an ultrathin layer, only a few atomic layers thick, of titanium oxide on the membrane which further generated a cleaner, more easily wettable surface that allows the DNA to go through it more easily. Although graphene-only nanopores can be used for translocating DNA, coating the graphene membranes with a layer of oxide consistently reduced the nanopore noise level and at the same time improved the robustness of the device.
Abstract in Nano Letters: DNA Translocation through Graphene Nanopores
Link: First Step Towards Electronic DNA Sequencing: Translocation Through Graphene Nanopores…