An interdisciplinary group of researchers from Columbia, University of Michigan, Caltech, and Arizona State University has created and programmed a nanoscale robot that can decide which way to move along a specially prepared DNA origami surface. The technology that uses these spider-like molecular robots to intelligently interact with their environment may one day lead to precise cancer therapies that would identify tumor cells and destroy their DNA or other intracellular machinery, as well as provide a generalized tool for nanomedicine.
Details from a Caltech press release:
"In normal robotics, the robot itself contains the knowledge about the commands, but with individual molecules, you can’t store that amount of information, so the idea instead is to store information on the commands on the outside," says Walter. And you do that, says Stojanovic, "by imbuing the molecule’s environment with informational cues."
"We were able to create such a programmed or ‘prescribed’ environment using DNA origami," explains Yan. DNA origami, an invention by Caltech Senior Research Associate Paul W. K. Rothemund, is a type of self-assembled structure made from DNA that can be programmed to form nearly limitless shapes and patterns (such as smiley faces or maps of the Western Hemisphere or even electrical diagrams). Exploiting the sequence-recognition properties of DNA base pairing, DNA origami are created from a long single strand of DNA and a mixture of different short synthetic DNA strands that bind to and "staple" the long DNA into the desired shape. The origami used in the Nature study was a rectangle that was 2 nanometers (nm) thick and roughly 100 nm on each side.
The researchers constructed a trail of molecular "bread crumbs" on the DNA origami track by stringing additional single-stranded DNA molecules, or oligonucleotides, off the ends of the staples. These represent the cues that tell the molecular robots what to do—start, walk, turn left, turn right, or stop, for example—akin to the commands given to traditional robots.
The molecular robot the researchers chose to use—dubbed a "spider"—was invented by Stojanovic several years ago, at which time it was shown to be capable of extended, but undirected, random walks on two-dimensional surfaces, eating through a field of bread crumbs.
To build the 4-nm-diameter molecular robot, the researchers started with a common protein called streptavidin, which has four symmetrically placed binding pockets for a chemical moiety called biotin. Each robot leg is a short biotin-labeled strand of DNA, "so this way we can bind up to four legs to the body of our robot," Walter says. "It’s a four-legged spider," quips Stojanovic. Three of the legs are made of enzymatic DNA, which is DNA that binds to and cuts a particular sequence of DNA. The spider also is outfitted with a "start strand"—the fourth leg—that tethers the spider to the start site (one particular oligonucleotide on the DNA origami track). "After the robot is released from its start site by a trigger strand, it follows the track by binding to and then cutting the DNA strands extending off of the staple strands on the molecular track," Stojanovic explains.
"Once it cleaves," adds Yan, "the product will dissociate, and the leg will start searching for the next substrate." In this way, the spider is guided down the path laid out by the researchers. Finally, explains Yan, "the robot stops when it encounters a patch of DNA that it can bind to but that it cannot cut," which acts as a sort of flypaper.
Press release: Spiders at the Nanoscale: Molecules that Behave Like Robots…
Abstract in Nature: Molecular robots guided by prescriptive landscapes