The Scripps Research Institute has just published a study that identifies the existence of new binding sites on HIV protease. Two compounds were found that attach themselves to the new spots on the protease, a feat that was possible thanks to people volunteering their idle computer cycles to FightAIDS@Home. The project utilizes IBM‘s distributed computing platform, the World Community Grid, to synchronize geographically separate processors to work on a common task.
IBM reports:
Utilizing computing power from 1.5 million devices networked through IBM’s World Community Grid, the new sites on the HIV protease are being used as docking targets for virtual screening experiments, in order to guide the development of these chemical compounds into a new class of potent HIV inhibitors. Using the massive computational resources of the World Community Grid, the FightAIDS@Home team has already docked over 500,000 compounds against these newly characterized binding sites.
By aggregating the unused cycle time of 1.5 million personal computers donated by volunteers in over 80 countries, World Community Grid is now the world’s largest public humanitarian grid, equivalent in power to a Top 15 supercomputer, and crunched more than 107,000 years of computational time in just 5 years for the Scripps Research Institute project, providing more than 104 million calculations.
Once the HIV virus enters a human cell, it uses a small set of proteins called enzymes to force the cell to produce many new copies of itself, which then go on to infect other cells. Most HIV drugs work by blocking the operation of one or more of these enzymes. In the current work, the Scripps researchers are looking for new compounds that will stabilize the inhibited conformation, or shape, of the HIV protease enzyme, and thus help stop the virus from replicating. Because HIV mutates so frequently, some drugs that inhibit the enzyme from replicating are no longer working, or are not working as effectively. By running calculations on the World Community Grid FightAIDS@Home project, the team at Scripps is trying to develop new drugs that bind to more parts of the mutant enzyme, thereby shutting it down more effectively.
Abstract in Chemical Biology & Drug Design: Fragment-Based Screen against HIV Protease
IBM press release: Two Compounds Discovered that Pave the Way for New Class of AIDS Drug …
Link: World Community Grid