There’s a great deal of speculation about the effect RFID (radio frequency identification) technology has on medical equipment. So the researchers from Georgia Tech, backed by an industry trade group, have setup shop to find out what consequences RFID might have on medgadgets. From implantable devices like pacemakers and deep brain stimulators to clinical equipment like infusion pumps and pulse oxymeters, the goal is to setup a set of protocols to evaluate just about any medical gadget-RFID interaction imaginable.
The test protocol development is being overseen by AIM Global, the international trade association representing automatic identification and mobility technology solution providers, and also includes MET Laboratories, a company that provides testing and certification services for medical devices.
The researchers will test whether radio frequency-emitting devices cause any negative effects on the medical devices, and under what conditions these effects might occur. Testing will also determine whether specific medical devices are particularly susceptible to certain radio frequency identification characteristics and if any corrective actions can be taken to mitigate such susceptibility.
Medical device testing is not new for GTRI, which established its Medical Device Test Center more than 14 years ago. The facility was created to enable manufacturers of implantable cardiac pacemakers and defibrillators to work with providers of electronic article surveillance (EAS) systems, used by retailers, libraries and other establishments to prevent theft and track inventory. The center’s original mission was to help manufacturers improve compatibility between implantable medical devices and EAS systems that radiate electromagnetic energy. In 2006, GTRI expanded its operations and facilities to test new types of security and logistical systems (SLS), including RFID.
To test the effects of RFID systems on medical devices, the researchers simulate real-world conditions by placing a medical device in a tank of saline solution that simulates the electrical characteristics of body tissue and fluid. The medical device is then exposed to different RFID technologies. Several tests are performed with the device placed in different orientations to represent how people typically interact with the emissions.
“We think the testing procedure for RFID systems will be similar to the EAS system procedure, but there are a few more challenges with the RFID systems because a person doesn’t always pass through a portal,” noted Bennett, who is also a member of AIM Global’s RFID Experts Group. “Medical devices can be affected by active tags with stronger signals or RFID systems reading passive tag signals.”
The test protocols developed by GTRI will be submitted to the U.S. Food and Drug Administration for concurrence, after which a worldwide certification program will be launched and other testing facilities will be invited to participate.
Press release: New Protocols Will Test Effects of RFID Systems on Medical Devices…