Research engineers at Oregon State University have developed a new deposition technique to layer “nanostructure films” onto surface of various compounds. When applied to eye glasses, the technology reduces glare and reflectivity, and minimizes UV light penetration, while making the process of coating cheaper and easier.
Some coatings with these features are already available, but the new technology should perform better at a lower cost, and be able to be applied on-site in a dispenser’s office.
“There’s really a whole range of things this technology may ultimately be useful for,” said Chih-hung Chang, an associate professor in the OSU Department of Chemical, Biological and Environmental Engineering. “They should be able to make almost any type of solar energy system work more efficiently, and ultimately could be used in cameras or other types of lenses.”
A patent has been applied for on the new technology, and the first commercial products may be ready within a year, Chang said.
The key to the process is use of a chemical bath, controlled by a microreactor, to place thin-film deposits on various substrates such as glass, plastic, silicon or aluminum. In this case, the technology will create a type of nanostructure that resembles millions of tiny pyramids in a small space, which function to reduce the reflectance of any light that strikes the material.
The scientists are now working on the application of this thin film to polycarbonate, the type of plastic most commonly used in eyeglass production, and also plan to create a small unit that can apply the films inexpensively in an office setting.
The final product should be faster to apply, less costly, reduce waste of materials and perform better than existing technologies, the researchers said.
More from Oregon State: New nanostructure technology provides advances in eyeglass, solar energy performance…