Universitat Politècnica de Catalunya is reporting on nanotechnology research by its scientists in which gold nanoparticles were used to deliver burning heat directly to tumors, destroying the cancer from within.
The system is based on the twofold outcome of the nanoparticle engineering carried out by the researchers. Firstly, the nanoparticles must be able to recognize damaged cells and, secondly, they must become excellent nanosources of heat. The former is achieved by coating the nanoparticles with molecules that detect and go into the cancer cells. In the latter case, minute metal structures are designed so that their shape optimizes the generation of heat in response to an external light source.
The project is still at the experimental stage and is being undertaken in collaboration with experts in medicine and biology. One of the key processes in the experimental work is the selection of the particles from the damaged cells, which are inserted once their possible toxicity has been minimized. In principle, gold is biocompatible and is readily evacuated by body fluids, but the researchers must make sure that the chemistry involved in the process does not affect the cells.
The interaction between light and gold nanostructures is not only useful for the treatment of cancer but also for its diagnosis. Romain Quidant is working on a chip that is made up of a multitude of metal nanostructures that are able to send a light signal when they come into contact with cancer markers. This “nanolaboratory” performs a vast number of analyses in parallel from a single drop of blood. Each metal nanostructure is coated in molecules (receptors) that are able to recognize and trap a specific cancer marker. When this happens, the nanostructure responds to the external light differently to when no markers are trapped.
The team led by Romain Quidant in this research line has already developed a nanosensor prototype designed to detect doping substances in the blood, such as the steroids that some sportspeople use.
The main advantages of this type of device are its small size (which makes it easy to use in developing countries where there are no laboratories, for example), and its great sensitivity, which would make it possible to detect cancer in its early stages of development when there is a low density of markers.
To learn more about other developments in nanotech research from Universitat Politècnica de Catalunya check out this story: A team of researchers from the UPC’s Institute of Photonic Sciences is working on how gold nanoparticles illuminated with laser light may be able to detect and treat cancer…