Damaged cartilage of large bones, as in osteoarthritis, is a particularly common condition in humans, especially as we age. Now there’s hope that cartilage grafts may be possible thanks to fiber scaffolds with nano scale features.
From the MIT press office:
The scaffold has two layers, one that mimics bone and one that mimics cartilage. When implanted into a joint, the scaffold can stimulate mesenchymal stem cells in the bone marrow to produce new bone and cartilage. The technology is currently limited to small defects, using scaffolds roughly 8 mm in diameter.
The researchers demonstrated the scaffold’s effectiveness in a 16-week study involving goats. In that study, the scaffold successfully stimulated bone and cartilage growth after being implanted in the goats’ knees.
The project, a collaboration enabled by the Cambridge-MIT Institute, began when the team decided to build a scaffold for bone growth. They started with an existing method to produce a skin scaffold, made of collagen (from bovine tendon) and glycosaminoglycan, a long polysaccharide chain. To mimic the structure of bone, they developed a technique to mineralize the collagen scaffold by adding sources of calcium and phosphate.
Once that was done, the team decided to try to create a two-layer scaffold to regenerate both bone and cartilage (known as an osteochondral scaffold). Their method produces two layers with a gradual transition between the bone and cartilage layers.
“We tried to design it so it’s similar to the transition in the body. That’s one of the unique things about it,” said Gibson [Professor Lorna Gibson, co-leader of the MIT research team -ed.].
There are currently a few different ways to treat cartilage injuries, including stimulating the bone marrow to release stem cells by drilling a hole through the cartilage into the bone; transplanting cartilage and the underlying bone from another, less highly loaded part of the joint; or removing cartilage cells from the body, stimulating them to grow in the lab and re-implanting them.
The new scaffold could offer a more effective, less expensive, easier and less painful substitute for those therapies, said Gibson.
Chondromimetic technology @ OrthoMimetics…
More from MIT Technology Review…
Image: Mesenchymal stem cells (labeled green) are grown on a scaffold of nanofibers (labeled red). Credit: Casey Korecki, Caren Aronin, and Rocky Tuan