Adam Wilson, a graduate student at University of Wisconsin-Madison, linked up a “mind-reading” system developed at the Biomedical Engineering department to work with Twitter. By using EEG to record brain wave variations in patients focusing on a flashing letter, people who are locked-in and are not able to voluntarily use their muscles are now able to Tweet just like anyone else: in under 140 characters. Of course, this research can be extended to any communication platform, allowing both online and personal communication.
From UW-Madison:
Some brain-computer interface systems employ an electrode-studded cap wired to a computer. The electrodes detect electrical signals in the brain — essentially, thoughts — and translate them into physical actions, such as a cursor motion on a computer screen. "We started thinking that moving a cursor on a screen is a good scientific exercise," says Justin Williams, a UW-Madison assistant professor of biomedical engineering and Wilson’s adviser. "But when we talk to people who have locked-in syndrome or a spinal-cord injury, their No. 1 concern is communication."
In collaboration with research scientist Gerwin Schalk and colleagues at the Wadsworth Center in Albany, N.Y., Williams and Wilson began developing a simple, elegant communication interface based on brain activity related to changes in an object on screen.
The interface consists, essentially, of a keyboard displayed on a computer screen. "The way this works is that all the letters come up, and each one of them flashes individually," says Williams. "And what your brain does is, if you’re looking at the ‘R’ on the screen and all the other letters are flashing, nothing happens. But when the ‘R’ flashes, your brain says, ‘Hey, wait a minute. Something’s different about what I was just paying attention to.’ And you see a momentary change in brain activity."
Wilson, who used the interface to post the Twitter update, likens it to texting on a cell phone. "You have to press a button four times to get the character you want," he says of texting. "So this is kind of a slow process at first."
However, as with texting, users improve as they practice using the interface. "I’ve seen people do up to eight characters per minute," says Wilson.
Here’s a video demonstrating the system:
Press release: Researchers use brain interface to post to Twitter …
(hat tip: Joe H.)