• Popular
    • Medicine
    • Radiology
    • Cardiology
    • Surgery
    • Nanomedicine
    • Military Medicine
    • Rehab
  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS
  • Submit PR
  • Log in
Medgadget
Medgadget
  • Popular
    • Medicine
      Flexible Sensors Detect Heavy Metals in Sweat

      Flexible Sensors Detect Heavy Metals in Sweat

      Nanopore Sensor to Study Protein Aggregation in Neurodegeneration

      Nanopore Sensor to Study Protein Aggregation in Neurodegeneration

      Biobots Use Optogenetic Muscle Actuators for Movement

      Biobots Use Optogenetic Muscle Actuators for Movement

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

    • Radiology
      Ultrasound Tornado Rapidly Disrupts Blood Clots

      Ultrasound Tornado Rapidly Disrupts Blood Clots

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Exciting Medtech at the Healthcareᐩ Expo Taiwan

      Fluorescence Imaging System Illuminates Tumor Depth

      Fluorescence Imaging System Illuminates Tumor Depth

      Soft Robot Grows Like a Plant to Travel Through Tight Spaces

      Soft Robot Grows Like a Plant to Travel Through Tight Spaces

    • Cardiology
      Belt Monitors Heart Failure Patients

      Belt Monitors Heart Failure Patients

      Camera Measures Blood Pressure with Quick Look

      Camera Measures Blood Pressure with Quick Look

      Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

      Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

    • Surgery
      Microneedle Bandage for Hemostatic Control

      Microneedle Bandage for Hemostatic Control

      Biobots Use Optogenetic Muscle Actuators for Movement

      Biobots Use Optogenetic Muscle Actuators for Movement

      Implantable Device Adheres to Muscle, Treats Atrophy

      Implantable Device Adheres to Muscle, Treats Atrophy

      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

    • Nanomedicine
      Extra Hot Nanoparticles for Cancer Therapy

      Extra Hot Nanoparticles for Cancer Therapy

      Making Tumors Tastier for the Immune System

      Making Tumors Tastier for the Immune System

      Improved Membrane Coating for Anti-Cancer Nanoparticles

      Improved Membrane Coating for Anti-Cancer Nanoparticles

      Magnetic Bacteria Target Tumors

      Magnetic Bacteria Target Tumors

    • Military Medicine
      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fabric Makes Electricity from Movement to Power Wearables

      Fabric Makes Electricity from Movement to Power Wearables

      Wearable Uses Microneedles to Track Metabolism

      Wearable Uses Microneedles to Track Metabolism

    • Rehab
      Smart Walking Stick for Visually Impaired People

      Smart Walking Stick for Visually Impaired People

      Implantable Device Adheres to Muscle, Treats Atrophy

      Implantable Device Adheres to Muscle, Treats Atrophy

      Non-Invasive Spinal Modulation for Cerebral Palsy

      Non-Invasive Spinal Modulation for Cerebral Palsy

      Implanted Magnets for Prosthetic Control

      Implanted Magnets for Prosthetic Control

  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Log in
  • Submit PR
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS

New Imaging Technique Helps Visualize Biomolecular Structures

February 4th, 2009 Medgadget Editors Genetics


Scientists from the Howard Hughes Medical Institute, National Institutes of Health, and Florida State University created what they believe is the highest resolution 3D optical microscope. By upgrading a PALM (photoactivated localization microscopy) device using interferometry techniques, they were able to bring out the third dimension.
From a statement by HHMI:

Hess [Harald F. Hess] and Janelia Farm colleague Eric Betzig invented the PALM microscope in 2005. Scarcely three years later, it was one of a handful of new methods of “super-resolution” microscopy that were honored by Nature Methods in January 2009 as the “Method of the Year” for the previous year.
PALM permits biologists to visualize cells with far more detail than conventional optical microscopes, which are inherently limited by the wavelength of light. To achieve this resolution, PALM uses fluorescent labels that can be turned on and off with a pulse of light. Cells whose proteins are tagged with these labels are imaged repeatedly with PALM, with only a tiny subset of the fluorescent molecules turned on in each image. By compiling many thousands of these images, PALM creates a complete picture of the structure under study, pinpointing each fluorescently tagged protein. As a result, researchers get a much clearer picture than the overlapping haze that results when all of the tagged proteins are lit up at the same time, as in traditional fluorescence microscopy.
Hess, who spent eight years working in the data storage and semiconductor industries, quickly focused his thinking on interferometry as a way to identify a protein’s precise depth within a biological sample, and September of 2006 proposed the idea of iPALM. “Interferometry is one of the more sensitive measurement techniques out there,” Hess said. “If you have bright enough light sources, you can measure ridiculously tiny displacements – way below the size of an atom.”
When he worked in the hard disk industry, Hess used interferometry to detect subtle convolutions on the surface of a hard drive disk. The approach, he said, involved bouncing light off the surface of the disk and comparing the returned light wave to a “reference wave,” which had been bounced off a mirror a known distance from the light source. “If light goes down and bounces off a surface, if that surface is a little bit higher or a little bit lower, that wave’s going to be coming at you a little bit later or a little bit sooner,” he explained. If the mirror and the experimental surface are the same distance from the light source, the waves, when added together, will cancel one another out. But tiny discrepancies in the two distances will shift the waves a measurable amount. “Depending on the amplitude of the summed waves,” he said, “you can determine the vertical position to within nanometers.”
No one had figured out how to apply the technique to biological samples, however. The primary challenge, Hess explained, was that in fluorescence microscopy, the key light waves travel from fluorescent tags within the sample itself, not from a readily manipulated laser. “It’s a whole new paradigm,” he said. “It isn’t like you can go in there and take a piece of the laser to make a reference beam.”
Hess and Janelia Farm colleague Gleb Shtengel saw a way around the problem: They decided to split each particle of light emitted from the fluorescent molecule in two. By splitting the photons, the researchers knew that each fluorescent photon would act as its own reference beam. They adapted the standard PALM microscope to collect this light both above and below the sample. Both of those beams of light travel to a custom-made beam-splitter, which divides the beam and sends it to three different cameras. A molecule’s depth within the sample determines how much light reaches each of the cameras. “We record an image triplet, and depending on how much appears in camera one, two and three, we can say ‘this was the height.’ This is by far the most sensitive way of measuring vertical height,” Hess said.
“iPALM needs only a modest amount of light to generate its sensitive measurements, and that’s important for biological imaging,” Hess says. Imaging techniques that demand more photons can force researchers to label the proteins they want to see with brighter dyes – which are often bulky and require harsh sample preparations that damage cells. Fluorescent probes such as those compatible with iPALM, on the other hand, can be genetically encoded so that they are manufactured by cells themselves. The power of these glowing markers was recognized with the 2008 Nobel Prize in Chemistry, which was awarded to the HHMI investigator Roger Y. Tsien, Osamu Shimomura, and Martin Chalfie for the discovery and development of the first such tool, green fluorescent protein.

View 3D video of integrin proteins as visualized with iPALM
iPALM Tutorial PDF
Press release: Super-Resolution Microscopy Takes on a Third Dimension
Image: Side: With PALM imaging, the two dimensional distribution of the labeled membrane proteins becomes much clearer. However, it is impossible to determine the vertical position of the fluorescent molecules in the flat image. Top: iPALM pinpoints the three-dimensional distribution of the fluorescently tagged membrane proteins. In this image, the vertical position has been color coded, with red molecules being the deepest and purple the highest. Cross-sections of small regions of the image are shown in the white boxes on the right, and reveal two layers of the labeled membrane proteins — at the top and bottom of the cell.

Medgadget Editors

Medical technologies transform the world! Join us and see the progress in real time. At Medgadget, we report the latest technology news, interview leaders in the field, and file dispatches from medical events around the world since 2004.

Sponsored
C-mo Medical Solutions extends seed investment round to €4.8 million to transform cough monitoring

C-mo Medical Solutions extends seed investment round to €4.8 million to transform cough monitoring

New Clarius Power Fan HD3 Delivers a First for Handheld Ultrasound: Continuous Scanning

New Clarius Power Fan HD3 Delivers a First for Handheld Ultrasound: Continuous Scanning

Fluidx Unveils New Embolic for Neurovascular Use

Fluidx Unveils New Embolic for Neurovascular Use

Annalise.ai and Nuance Communications (a Microsoft Company) Announce Key Partnership to Improve Patient Outcomes with Workflow-Integrated AI

Annalise.ai and Nuance Communications (a Microsoft Company) Announce Key Partnership to Improve Patient Outcomes with Workflow-Integrated AI

PT Genie Unveils New Brand Identity Reflecting Company’s Transformation and Focus on the Global Future of AI and Machine Learning in Digital Healthcare

interviews & reviews
Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

Balance Boards to Stay Active in the Offfice: Interview with Joel Heath, CEO of FluidStance 

Exciting Medtech at the Healthcareᐩ Expo Taiwan

Exciting Medtech at the Healthcareᐩ Expo Taiwan

Medgadget Visits Healthcareᐩ Expo Taiwan

Medgadget Visits Healthcareᐩ Expo Taiwan

Diabetes Management Tech for Type II patients: Interview with Jeffrey Brewer, CEO of Bigfoot Biomedical

Diabetes Management Tech for Type II patients: Interview with Jeffrey Brewer, CEO of Bigfoot Biomedical

Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

Monitoring Congestive Heart Failure Through Speech: Interview with Tamir Tal, CEO of Cordio Medical

In-Office Pediatric Ear Tube Procedures: Interview with Preceptis Medical's Greg Mielke

In-Office Pediatric Ear Tube Procedures: Interview with Preceptis Medical's Greg Mielke

Symani Microsurgical Robotic System: Interview with Mark Toland, CEO of Medical Microinstruments

Symani Microsurgical Robotic System: Interview with Mark Toland, CEO of Medical Microinstruments

  • Subscribe
  • Contact us
  • Submit
  • About
  • Back to top
Medgadget

Medical technologies transform the world! Join us and see the progress in real time. At Medgadget, we report the latest technology news, interview leaders in the field, and file dispatches from medical events around the world since 2004.

  • About
  • Editorial policies
  • Contact
  • Terms of Service
  • Privacy
  • Submit press release
  • Advertise
© Medgadget, Inc. All rights reserved. | The Medical Revolution Will Be Blogged.
Please support this website by adding us to your whitelist in your ad blocker. Ads are what helps us bring you premium content! Thank you!
Posting....
  • Facebook
  • Twitter
  • LinkedIn
  • Reddit
  • Email