MIT Technology Review is reporting on the work of Alistair Elfick and colleagues at the University of Edinburgh that uses lasers to detect structural inconsistencies in the DNA of sperm. By applying Raman spectroscopy, a technique that identifies molecules by the way they scatter photons, the new technology may lead to better sperm selection methods during IVF.
From MIT Tech Review:
In order to probe a single sperm cell with Raman spectroscopy, the researchers first pin it down with optical tweezers–a focused laser beam that is able to “trap” a small object like a living cell. The unique scattering produced by each molecule creates a fingerprint of the contents in a sample, allowing scientists to analyze its chemical makeup. In this application, the researchers use Raman spectroscopy to look at the structure of a sperm cell’s DNA and determine whether that DNA is broken or intact. Elfick explains that when DNA breaks, a chemical group forms at the ends of the breaks, and they can be detected with Raman spectroscopy.
Preliminary tests suggest that the technique does not harm the cells, although Elfick says that more rigorous testing must be done in order to bring the technique into clinical use. His team is hoping to commercialize this and other applications for Raman spectroscopy, including analyzing breast-cancer cells for specific proteins in order to tailor chemotherapy to individual patients.
More from MIT Technology Review…