• Popular
    • Medicine
    • Radiology
    • Cardiology
    • Surgery
    • Nanomedicine
    • Military Medicine
    • Rehab
  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS
  • Submit PR
  • Log in
Medgadget
Medgadget
  • Popular
    • Medicine
      Etched Nanopillars Kill Bacteria, Fungi on Titanium Implants

      Etched Nanopillars Kill Bacteria, Fungi on Titanium Implants

      Cells Release Insulin in Response to Music

      Cells Release Insulin in Response to Music

      Microneedle Skin Patch Measures Cancer Biomarkers

      Microneedle Skin Patch Measures Cancer Biomarkers

      Enzyme Treatment Strips Mucins from Cancer Cells

      Enzyme Treatment Strips Mucins from Cancer Cells

    • Radiology
      Ultrasound-Equipped Bra Monitors for Breast Cancer

      Ultrasound-Equipped Bra Monitors for Breast Cancer

      Portable and Radiation-Free Imaging with Magnetic Nanoparticles

      Portable and Radiation-Free Imaging with Magnetic Nanoparticles

      Imaging Technique Reveals Living Brain Tissue in its Complexity

      Imaging Technique Reveals Living Brain Tissue in its Complexity

      Wearable Ultrasound for Deep Tissue Monitoring

      Wearable Ultrasound for Deep Tissue Monitoring

    • Cardiology
      Ultrasound-Equipped Bra Monitors for Breast Cancer

      Ultrasound-Equipped Bra Monitors for Breast Cancer

      3D Printed Heart Muscle Beats

      3D Printed Heart Muscle Beats

      Wireless Patch Monitors, Paces Heart and then Biodegrades

      Wireless Patch Monitors, Paces Heart and then Biodegrades

      Photonic Radar Monitors Breathing from a Distance

      Photonic Radar Monitors Breathing from a Distance

    • Surgery
      Growth Factor-Loaded Microparticles Enhance 3D Bioprinted Muscle

      Growth Factor-Loaded Microparticles Enhance 3D Bioprinted Muscle

      Highly Precise Pressure Sensor for Laparoscopic or Robotic Surgical Tools

      Highly Precise Pressure Sensor for Laparoscopic or Robotic Surgical Tools

      Magnetic Tentacle Robots for Minimally Invasive Procedures

      Magnetic Tentacle Robots for Minimally Invasive Procedures

      Artificial Muscle Changes Stiffness with Voltage

      Artificial Muscle Changes Stiffness with Voltage

    • Nanomedicine
      Nanorobots Release Reactive Oxygen Species to Kill Fungal Biofilms

      Nanorobots Release Reactive Oxygen Species to Kill Fungal Biofilms

      Bottlebrush Nanoparticles Deliver Immunostimulatory Drugs

      Bottlebrush Nanoparticles Deliver Immunostimulatory Drugs

      Nanoparticles Deliver mRNA Therapy to the Lungs

      Nanoparticles Deliver mRNA Therapy to the Lungs

      Nanoparticles Get Lymphatic Vessels Pumping

      Nanoparticles Get Lymphatic Vessels Pumping

    • Military Medicine
      Wearable Can Take Multiple Sweat Samples

      Wearable Can Take Multiple Sweat Samples

      Wound Dressing Detects Infection, Changes Color

      Wound Dressing Detects Infection, Changes Color

      Device Measures Hemoglobin More Accurately in Dark Skin

      Device Measures Hemoglobin More Accurately in Dark Skin

      Fingertip Sensor Measures Lithium Levels in Sweat

      Fingertip Sensor Measures Lithium Levels in Sweat

    • Rehab
      Growth Factor-Loaded Microparticles Enhance 3D Bioprinted Muscle

      Growth Factor-Loaded Microparticles Enhance 3D Bioprinted Muscle

      Brain Computer Interface Decodes Speech and Facial Expressions

      Brain Computer Interface Decodes Speech and Facial Expressions

      Semi-Automated Manufacture of E-Skin Sensors

      Semi-Automated Manufacture of E-Skin Sensors

      Above Elbow Amputee Controls Individual Bionic Fingers

      Above Elbow Amputee Controls Individual Bionic Fingers

  • Categories
    • Exclusive
    • A-D
      • Anesthesiology
      • Art
      • Cardiac Surgery
      • Cardiology
      • Critical Care
      • Dentistry
      • Dermatology
      • Diagnostics
    • E-I
      • Emergency Medicine
      • ENT
      • Genetics
      • Geriatrics
      • GI
      • Informatics
    • M-N
      • Medicine
      • Military Medicine
      • Nanomedicine
      • Net News
      • Neurology
      • Neurosurgery
      • Nuclear Medicine
    • O-P
      • Ob/Gyn
      • Oncology
      • Ophthalmology
      • Orthopedic Surgery
      • Pathology
      • Pediatrics
      • Plastic Surgery
      • Psychiatry
      • Public Health
    • R-V
      • Radiation Oncology
      • Radiology
      • Rehab
      • Reproductive Medicine
      • Space Medicine
      • Sports Medicine
      • Surgery
      • Thoracic Surgery
      • Urology
      • Vascular Surgery
  • SUBSCRIBE
  • Submit PR
  • About
  • Log in
  • Submit PR
  • Follow
    • Facebook
    • Twitter
    • Linkedin
    • Youtube
    • Instagram
    • RSS

New Fluorescent Imaging Compound Lights Up When Inside Viable Cells

December 8th, 2008 Medgadget Editors Genetics

A typical problem with fluorescent imaging compounds is that once activated, they fluoresce regardless of where they find themselves, smearing the image as they diffuse through the body.
Now a research team, led by Hisataka Kobayashi, M.D., Ph.D., at the Molecular Imaging Program of National Cancer Institute’s Center for Cancer Research (CCR), in collaboration with Yasuteru Urano, Ph.D., at the University of Tokyo, created an imaging compound that can target specific cancer cells and activate only once inside, while subsequently going dark when the cell dies.
The National Institutes of Health reports:

The team created the activatable, cancer-targeting compound by joining a drug called trastuzumab (Herceptin), which is an antibody that binds to HER2 and is used to treat HER2-positive breast cancer, to a modified version of a small fluorescent complex known as BODIPY. This complex fluoresces only under acidic conditions, such as those found inside cellular structures called lysosomes, which are sac-like compartments inside cells that contain enzymes that break down large molecules the cell does not need. When the activatable BODIPY-antibody compound encounters a HER2-positive breast cancer cell, the trastuzumab portion binds to HER2 proteins on the cell’s surface, and then the cell takes the HER2-activatable complex inside. When this complex is processed inside the cell and enters the acidic environment of a lysosome, BODIPY becomes activated and fluoresces.
“Our design concept is very versatile and can be used to detect many types of cancer,” said Kobayashi. “Unlike other activatable fluorescent compounds, our compound consists of a targeting agent and a fluorescing agent that act independently. We can target the fluorescing agent to different types of cancer cells by using any antibody or molecule that is internalized by the targeted cells after it binds to the cell’s surface proteins.”

Using a mouse model, the Kobayashi team examined the potential of the activatable compound for detecting tumors within the body. They injected either the activatable compound, or a control that always fluoresces, into the tail of mice that had HER2-positive breast cancer tumors that had spread to their lungs. One day later, the investigators found fluorescence from the activatable compound only in lung tumors, whereas the “always on” control produced fluorescence in lung tumors, normal lung tissue, and the heart.
To confirm that the activatable compound was primarily processed by, or specific for, HER2-positive tumor cells, the researchers induced lung metastases in mice by intravenously injecting both HER2-positive tumor cells and tumor cells that carried the gene for red fluorescent protein (RFP) instead of the HER2 gene. After administering the fluorescence compounds, they found that the activatable compound produced fluorescence only in the HER2-positive tumors, whereas the “always on” control produced fluorescence in HER2-positive tumors and the surrounding tissues as well as the RFP-positive tumors.
Of the 472 HER2-positive tumors examined in mice with the activatable compound, only three showed fluorescence from both the activatable compound and the RFP (false positive), indicating that the activatable compound had a 99 percent tumor detection accuracy, or specificity, for HER2-positive tumors. The “always on” control had a specificity of less than 85 percent.
The team also confirmed that the activatable compound detects only living cells. Thirty minutes after they exposed tumor tissues to alcohol to kill the cells, they found that the fluorescence of the activatable compound significantly decreased in tumor tissue, whereas the fluorescence of the “always on” control showed minimal changes.
In another series of experiments, the researchers demonstrated the versatility of their design concept by linking a BODIPY complex to a molecule that targets the surface of mouse ovarian cancer cells. This compound allowed the researchers to detect clusters of live ovarian cancer cells that had spread to the peritoneum, or the tissue lining the walls of the abdomen, of mice.

Press release: New Targeted Fluorescent-Imaging Compound Allows Researchers to Detect Viable Cancer Cells in Mice …
Abstract: Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes

Medgadget Editors

Medical technologies transform the world! Join us and see the progress in real time. At Medgadget, we report the latest technology news, interview leaders in the field, and file dispatches from medical events around the world since 2004.

Sponsored

Viral Vector Manufacturing in Gene Therapy and Vaccine Development

Health and Clean Air: Why Indoor Ventilation Matters

Health and Clean Air: Why Indoor Ventilation Matters

New Survey Finds Strong Consumer Preference for More Natural Hernia Repair Options

MedTech Outlook 2023 for Latin America Released

MedTech Outlook 2023 for Latin America Released

Packaging Compliance Labs (PCL) Celebrates Site Expansion in Grand Rapids, MI

interviews & reviews
UV-Free Air Decontamination: Interview with Sorel Rothschild, VP at Quantum Innovations

UV-Free Air Decontamination: Interview with Sorel Rothschild, VP at Quantum Innovations

EarliPoint Evaluation System for ASD Diagnosis: Interview with Tom Ressemann, CEO of EarliTec Dx

EarliPoint Evaluation System for ASD Diagnosis: Interview with Tom Ressemann, CEO of EarliTec Dx

Visually Guided Uterine Biopsies in Physician’s Office: Interview with Allison London Brown, CEO of LUMINELLE

Visually Guided Uterine Biopsies in Physician’s Office: Interview with Allison London Brown, CEO of LUMINELLE

AI-Powered Pain Relief: Interview with Claire Smith, VP at Nevro

AI-Powered Pain Relief: Interview with Claire Smith, VP at Nevro

MISHA Knee Shock Absorber: Interview with Anton Clifford, CEO of Moximed

MISHA Knee Shock Absorber: Interview with Anton Clifford, CEO of Moximed

Shelf-Stable Breast Milk Powder: Interview with Dr. Vansh Langer, CEO at BBy

Shelf-Stable Breast Milk Powder: Interview with Dr. Vansh Langer, CEO at BBy

"We Are Electric" by Sally Adee: Medgadget Interviews the Author

"We Are Electric" by Sally Adee: Medgadget Interviews the Author

  • Subscribe
  • Contact us
  • Submit
  • About
  • Back to top
Medgadget

Medical technologies transform the world! Join us and see the progress in real time. At Medgadget, we report the latest technology news, interview leaders in the field, and file dispatches from medical events around the world since 2004.

  • About
  • Editorial policies
  • Contact
  • Terms of Service
  • Privacy
  • Submit press release
  • Advertise
© Medgadget, Inc. All rights reserved. | The Medical Revolution Will Be Blogged.
Please support this website by adding us to your whitelist in your ad blocker. Ads are what helps us bring you premium content! Thank you!
  • Facebook
  • Twitter
  • LinkedIn
  • Reddit
  • Email