The National Institute of Standards and Technology has licensed its optical tweezer technology to Haemonetics out of Braintree, Massachusetts to develop it into a practical method of performing highly sensitive blood tests.
Optical tweezers are actually tightly focused laser beams. They can trap certain objects, such as latex microspheres or biological cells, and move them around in water. This occurs because the lasers’ electric fields interact with electric charges on the objects.
To detect disease-causing agents, researchers can coat a microsphere with antibody particles and then touch it to a surface containing infectious particles (antigens). The antigens then stick to the antibodies on the sphere, reminiscent of Velcro, in which loops on one strip combine with hooks on the other. By determining how much laser power is required to pull the microsphere away from the surface, one can then calculate the amount of force needed to break off the antibodies from the antigens and thus count the number of individual antigens that were bound to the sphere. This in turn can detect and count biological antigens at extraordinarily low “femtomolar” concentrations—roughly equivalent to one antigen particle per quadrillion (1,000,000,000,000,000) water molecules.
Full story: ‘Femtomolar Optical Tweezers’ May Enable Sensitive Blood Tests …