A device which almost helped Tom Bourdillon to reach the peak of the Everest (three days before Sir Edmund Hillary) is being resurrected to help people suffering from chronic obstructive pulmonary disease (COPD). Researchers from University College London’s Centre for Altitude, Space and Extreme Environment Medicine, who rediscovered the functionality of the device, are teaming up with Smiths Medical to develop a product for COPD patients and those who are oxygen-depended in critical care units:
Bourdillon’s research was rediscovered by Jeremy Windsor and Roger McMorrow, mountaineering scientists at the UCL Centre for Altitude, Space and Extreme Environment Medicine (CASE), who had the idea to redevelop it into a modern breathing circuit for climbers.
“Bourdillon recognized that the problem on Everest was low levels of oxygen and if you solved the problem of delivering oxygen you would effectively reduce the height of the mountain to sea level,” said Dr McMorrow. “No-one knows exactly why his device failed but when I tested my prototype on Cho Oyu in the Himalayas 2005 it also failed. In my case the soda lime CO2 absorber malfunctioned and it is possible Bourdillon had the same problem although another theory is that it was a frozen valve. A recently invented CO2 absorber called ExtendAir solved the problem on my circuit.”
Dr McMorrow, when a Smiths Medical Research Fellow at UCL, showed his mountaineering prototype to Dr Russell at Smiths Medical, which has a long-standing partnership with UCL that includes collaboration on research in the field of respiratory medicine.
The two scientists quickly realized that the prototype for mountaineers had the potential to evolve into a ground-breaking device for COPD patients as well as for other patients weaning from oxygen in hospital and those on home oxygen.
Last year the device was successfully tested on Mount Everest at the Smiths Medical High Altitude Laboratory at Namche Bazaar, Nepal at 3,400m, (11,154 ft) as part of the Caudwell Xtreme Everest Study (CXE), a medical research project conducted by CASE. Smiths Medical is now optimizing and miniaturizing the prototype for patients.
Exercise is important for COPD patients but existing oxygen systems mean it is often not possible. The size of current open circuit systems mean that patients are often confined to their hospital beds or treated at home with large cylinders that severely restrict their mobility. Portable open circuit systems are not able to deliver high enough volumes of oxygen for long enough to permit exercise. In an open circuit system the faster a person breathes the more they dilute the oxygen with ordinary air. This means that if a patient dependent on oxygen starts to exercise their oxygen levels actually drop as their breathing grows faster.
Dr Russell added: “The new system is portable and should deliver a very high concentration of oxygen for a sustained period of time. It should help keep oxygen levels constant no matter how fast or slow a patient is breathing.”
More from Smiths Medical…