At Lawrence Livermore National Lab researchers may have found a new way to detect tuberculosis.
In experiments over the past year, a research team at Lawrence Livermore National Laboratory has used their system to detect a tuberculosis surrogate, even when it is surrounded by sputum and mucus-like substances.
They also were able to differentiate between two similar bacteria, distinguishing between an avirulent strain of tuberculosis and a similar bacterium, Mycobacterium smegmatis.
Their research, using a system called Single-Particle Aerosol Mass Spectrometry, or SPAMS, is described in today’s edition of Analytical Chemistry, a semi-monthly journal published by the American Chemical Society.
“Without reagents, we can rapidly detect avirulent tuberculosis that is coated in sputum-like materials and we can distinguish between two similar mycobacteria,” said Kristl Adams, a LLNL postdoctoral biological physicist and the paper’s lead author.
“The reason we used two similar mycobacteria in our research is that tuberculosis-like symptoms in a patient could be caused by many bacterial infections, not just tuberculosis. So we would like to differentiate between non-tuberculosis and tuberculosis infections,” Adams explained.
While emphasizing that their work is only a first step toward using SPAMS for tuberculosis diagnostics, Frank and Adams said they believe SPAMS could potentially detect the disease within five minutes with concentrated samples.
The SPAMS researchers have spoken with doctors at two northern California university medical centers about the possibility of undertaking experiments in a clinical setting to detect virulent tuberculosis within sputum samples from infected people.
The biggest challenge going forward is determining if infectious tuberculosis in humans can be detected with our pattern-matching algorithm. It is undetermined if the virulent tuberculosis pattern will have enough similarity from patient-to-patient that we can train on a known TB patient and detect TB in a patient with an unknown infection,” Adams said.
Press release: Instrument designed for biological pathogen monitoring can detect tuberculosis surrogate
Abstract in Analytic Chemistry: Reagentless Detection of Mycobacteria tuberculosis H37Ra in Respiratory Effluents in Minutes