MIT researchers have discovered that bacteria’s ability to adhere to surfaces depends partially on the stiffness of the surface, and they have built bacterium-resisting thin polymer films based on the finding.
From an MIT press release:
The researchers, who described their work in a paper in an upcoming issue of Biomacromolecules, found they could control the extent of bacterial adhesion to surfaces by manipulating the mechanical stiffness of polymer films called polyelectrolyte multilayers. Thus, the films could be designed to prevent accumulation of hazardous bacteria or promote growth of desirable bacteria.
“All other factors being equal, mechanical stiffness of material surfaces increases bacterial adhesion,” said Krystyn Van Vliet, the Thomas Lord Assistant Professor of Materials Science and Engineering and the paper’s anchor author.
Van Vliet and her colleagues found the same trend in experiments with three strains of bacteria: Staphylococcus epidermidis, commonly found on skin, and two types of Escherichia coli.
Stiffness has usually been overlooked in studies of how bacteria adhere to surfaces in favor of other traits such as surface charge, roughness, and attraction to or repulsion from water. The new work shows that stiffness should also be taken into account, said Van Vliet.
Press release: Finding yields creation of bacteria-resistant films …