Biotech pioneer Dr. Leroy Hood, who is also president and co-founder of the Institute for Systems Biology in Seattle, recently gave an interview to the MIT Tech Review.
A snippet:
TR: You’ve said that solutions to biological complexity will be applied to complex problems in other fields. Can you explain what you mean by this?
LH: Evolution has had four billion years to figure out really clever solutions for new materials, new chemistries, new types of molecular machines, even new approaches to computing. I think by studying living organisms and deducing the mechanisms that underlie these evolutionarily sculpted solutions to complexity, those solutions can be applied to other fields. A classic example is materials science. The spectrum of different materials that organisms have evolved to make is enormous.
TR: For the past several years, researchers at your institute have talked about a diagnostic “nanochip” that would detect markers of disease from all over the body. Can you update me on that project?
LH: What we’re interested in doing is developing strategies that will let us identify proteins in the blood that will permit us to interrogate the state of individual organs: the liver, the heart, the muscle–whatever you’d like to look at.
The basic idea is that the organ-specific proteins from, say, the liver will reflect the operation of the networks in the liver. So they’ll be at one set of concentrations for normal liver, and a different set of concentrations for a liver that has cancer or hepatitis or cirrhosis and other diseases. These blood fingerprints, then, are not assays for a disease; they’re assays for all disease. We’ve looked at two organ systems: the brain and the liver. We’ve certainly verified in general ways these principles.
We’d like to be able to identify fiftyish organ-specific blood proteins from each of the organs, and then be able to measure them so we could have an organ-wide assay. We’d like to give you a very broad-spectrum screen of all the different major organs in disease. The challenge is to be able to do the measurements in the blood, because that’s the only organ that’s readily accessible; that’s the only organ that bathes all other organs; and it’s an organ whose fluid properties make it easily manipulable for measurement and so forth.
Full interview…
More from Dr. Leroy Hood profile page at the Institute for Systems Biology…