Drew Endy, a professor at MIT’s newly formed Biological Engineering Department, speaks with Edge magazine regarding the future of lab developed biological components.
For reference, I’m in the Biological Engineering Department at MIT, which politically is a new department; it’s only a couple of years old. A consequence of having a department is we have to teach undergraduates. Imagine that you are 15, you’re an ambitious youngster, or 17 or 18 years old and you’re showing up as a first year undergraduate at MIT, and you’re choosing what to major in. Well, you could choose to major in biology or electrical engineering or computer science or … oh, now you can major in biological engineering. What would you expect to learn? What would you expect of your faculty colleagues, your professors? What would they be able to teach you?
You look to your friends, who are going to study electrical engineering, and they can learn how to design and build computers, or write computer programs, and the objects that they make don’t have emergent properties unless that’s what’s intended, instead they behave as expected. Then you look at biological engineering and you say, well, yes, I’d like to design and build living organisms, or program DNA to execute genetic programs that behave as expected. But, nobody can teach you how to do that.
Thirty years into biotechnology, despite all of the successes and attention and hype, we still are inept when it comes to engineering the living world. We haven’t scratched the surface of it, and so the big question for me is, how do we make biology easy to engineer? For comparison, if you look at other examples of technology, there are many of them. Take modern electronics, during and following World War Two, people are building computers. Von Neumann is building a nice machine in the basement of the Institute for Advanced Study at Princeton. The official purpose of this machine is to design hydrogen bombs and compute the trajectories of munitions. And he of course is apparently running artificial life programs on it, because that’s what he’s more interested in Let’s say it was 1950. The Apple One, the personal computer is only 25 years later.
Link to the talk with Drew Endy at Edge…
Flashbacks: Medgadget Synthetic Biology archives…