Today’s cardiac assist devices suffer from a number of problems including immune system attacks, destruction of blood cells by the pump, and others. At Leeds University, researchers have created a webbed fabric, aka artificial myocardium, that can contract and squeeze the heart from outside, while not coming directly in contact with blood.
The webbing wraps around the heart and therefore does not come into contact with the blood stream. Inbuilt sensors recognise when the heart wants to beat and trigger a series of miniature motors which cause the web to contract – increasing the internal pressure and assisting the heart to pump the blood around the body…
“It’s a really simple concept that works in the same way as when you squeeze a plastic bottle, forcing the liquid inside to rise,” says PhD student David Keeling who has built a special rig to test the device.
The device is currently at prototype stage with team using a computer simulated model of the human blood flow circuit coupled to David’s mechanical rig. The rig replicates the motion of the heart within the simulation under different conditions, and allows the team to test their web device. The group is currently testing their latest prototype, aiming to refine design and assist strategies. Says David: “We’ve been looking at finding the optimum timing to trigger and also length of the compressive squeeze.”
Once the mechanics have been perfected, the team intends to simulate the effects of different heart diseases to gauge the potential success of the device.
Press release: Web will work wonders for the faint hearted…
Cardiac Assist Project Homepage …