Forget the drug releasing tooth, scientists at the Massachusetts Institute of Technology have developed an implantable medication laced film that could easily and accurately deliver pharmaceuticals.
The film could eventually be used to deliver drugs for cancer, epilepsy, diabetes and other diseases. It is among the first drug-delivery coatings that can be remotely activated by applying a small electric field.
“You can mete out what is needed, exactly when it’s needed, in a systematic fashion,” said Paula Hammond, the Bayer Professor of Chemical Engineering and senior author of a paper on the work appearing in the Feb. 11 issue of the Proceedings of the National Academy of Sciences.
The films are made from alternating layers of two materials: a negatively charged pigment and a positively charged drug molecule, or a neutral drug wrapped in a positively charged molecule.
When an electrical potential is applied to the film, the Prussian Blue loses its negative charge, which causes the film to disintegrate, releasing the drugs. The amount of drug delivered and the timing of the dose can be precisely controlled by turning the voltage on and off.
The electrical signal can be remotely administered (for example, by a physician) using radio signals or other techniques that have already been developed for other biomedical devices.
he films can carry discrete packets of drugs that can be released separately, which could be especially beneficial for chemotherapy. The research team is now working on loading the films with different cancer drugs.
Eventually, devices could be designed that can automatically deliver drugs after sensing that they’re needed. For example, they could release chemotherapy agents if a tumor starts to regrow, or deliver insulin if a diabetic patient has high blood sugar.
“You could eventually have a signaling system with biosensors coupled with the drug delivery component,” said Daniel Schmidt, a graduate student in chemical engineering and one of the lead authors of the paper.
MIT News: A ‘micro pharmacy’ inside: Implantable film can deliver drugs…