Here’s some interesting research, released back in December, from a team of investigators at UCLA, that has a therapeutic and diagnostic promise in oncology:
A multidisciplinary team of UCLA scientists was able to differentiate metastatic cancer cells from normal cells in patient samples using leading-edge nanotechnology that measures the cells’ softness.
The study, published Dec. 2 in the advance online edition of the journal Nature Nanotechnology, represents one of the first times researchers have been able to take living cells from cancer patients and apply nanotechnology to analyze them and determine which were cancerous and which were not. The nanoscience measurements may provide a potential new method for detecting cancer — especially in cells from body cavity fluids, where diagnosis using current methods is typically very challenging. The method also may aid in personalizing treatments for patients.
When cancer is becoming metastatic or is invading other organs, the diseased cells must travel throughout the body. Because these cells need to enter the bloodstream and maneuver through tight anatomical spaces, they are much more flexible, or softer, than normal cells. These spreading, invading cancer cells can cause a buildup of fluids in body cavities such as the chest and abdomen. But fluid buildup in patients does not always mean cancer cells are present. If the fluid could be quickly and accurately tested for the presence of cancer, oncologists could make better decisions about how aggressive a treatment should be administered or if any treatment is necessary at all.
In this study, researchers collected fluid from the chest cavities of patients with lung, breast and pancreatic cancers — a relatively non-invasive procedure. One problem with diagnosing metastatic disease in this setting is that cancer cells and normal cells in body cavity fluids look very similar under an optical microscope, said Jianyu Rao, a researcher at UCLA’s Jonsson Cancer Center and one of the study’s senior authors. Conventional diagnostic methods fail to detect about 30 percent of cases in which cancer cells are present in the fluid…
Employing one of the most valuable tools in the nanotechnology arsenal, the research team used an atomic force microscope (AFM) to measure cell softness. Since the cells being analyzed were less than half the diameter of a human hair, researchers needed a very precise and delicate instrument to measure resistance in the cell membrane, said chemistry and biochemistry professor James Gimzewski, a member of UCLA’s California NanoSystems Institute and also one of the study’s senior authors.
“We had to measure the softness of the cell without bursting it,” Gimzewski said. “Otherwise, it’s like trying to measure the softness of a tomato using a hammer.”
The AFM uses a minute, sharp tip on a spring to push against the cell surface and determine the degree of softness. Think of it as an extension of a doctor’s hands performing a physical examination to determine disease, Gimzewski said.
“You look at two tomatoes in the supermarket and both are red. One is rotten, but it looks normal,” Gimzewski said. “If you pick up the tomatoes and feel them, it’s easy to figure out which one is rotten. We’re doing the same thing. We’re poking and quantitatively measuring the softness of the cells.”
After probing a cell, the AFM assigns a value that represents how soft a cell is based on the resistance encountered. What the team found was that the cancer cells were much softer than the normal cells and that the cancer cells were similarly soft with very little variation in gradation. The normal, healthy cells from the same specimen were much stiffer; in fact, the softness values assigned to each group did not overlap at all, making diagnosis using this nanomechanical measurement easier and more accurate.
UCLA researchers discover cancer cells ‘feel’ much softer than normal cells …
Statement from the National Cancer Institute …
Abstract: Nanomechanical analysis of cells from cancer patients Nature Nanotechnology 2, 780 – 783 (2007)