A group of engineers at Washington University in St. Louis are trying to analyze how genetic information translates into the mechanics of brain and heart folding. And they seem to have some pretty interesting theories to work on:
Larry A.Taber, Ph.D., the Dennis and Barbara Kessler Professor of Biomedical Engineering, and Phillip Bayly, Ph.D., Hughes Professor of Mechanical Engineering, are examining mechanical and developmental processes that occur in the folding of the brain’s surface, or cortex, which gives the higher mammalian brain more surface area (and hence more intellectual capacity) than a brain of comparable volume with a smooth surface.
Folding is very important in human brain development because some of the worst neurological problems such as schizophrenia, autism and lissenchephaly (smoothness of the cortex, found with severe retardation) are associated with abnormal brain folding. The neuromuscular disorder dystonia is possibly associated with faulty connectivity in the brain, which has been hypothesized to affect cortical folding. The researchers hope that increased understanding of brain folding might someday help prevent such diseases.
Although folding is generally what makes higher mammals smart, Albert Einstein had an abnormally folded brain that resulted in genius. Certain folds in his brain were absent, which might have enabled the area associated with mathematical reasoning to be larger than normal because it didn’t have a boundary to restrict its growth.
According to Taber, the heart and the brain both begin as simple tubes that eventually develop in totally different ways. Looping is a key phenomenon in the early embryo where the tubular heart bends and rotates in a precise manner. Taber has found that the processes of bending and rotation in the embryonic heart are actually driven by at least two different mechanical forces. His research could help scientists better understand the roles physics and mechanics play in the normal developing heart and in the genesis of heart defects.
Bayly researches the mechanics of brain injury, recently looking into brain deformation due to acceleration of the intact skull. Both have long been aware of a theory posited by their WUSTL colleague, David Van Essen, Ph.D., the Edison Professor of Neurobiology and head of the School of Medicine’s Department of Anatomy and Neurobiology. Van Essen’s hypothesis, published in 1997 in the journal Nature, is a mechanical theory based on tension in the axons (the wiring through which nerve cells communicate). The essence of the hypothesis is that tension in axons is the driving force of folding. Van Essen’s theory is one of only about a half dozen in the literature concerning the mechanical process of folding. In contrast, much more is known about the genetics of the brain and heart.
Washington University in St. Louis full statement: Engineers study brain folding in higher mammals …