MIT scientists have a new theory for the inherent strength of bones within our bodies:
Unlike synthetic building materials, which tend to be homogenous throughout, bone is heterogeneous living tissue whose cells undergo constant change. Scientists have classified bone’s basic structure into a hierarchy of seven levels of increasing scale. Level 1 bone consists of bone’s two primary components: chalk-like hydroxyapatite and collagen fibrils, which are strands of tough, chewy proteins. Level 2 bone comprises a merging of these two into mineralized collagen fibrils that are much stronger than the collagen fibrils alone. The hierarchical structure continues in this way through increasingly larger combinations of the two basic materials until reaching level 7, or whole bone.
Buehler [Professor Markus Buehler, MIT’s Department of Civil and Environmental Engineering –ed] scaled down his model to the atomistic level, to see how the molecules fit together–and equally important for materials scientists and engineers–how and when they break apart. More precisely, he looked at how the chemical bonds within and between molecules respond to force. Last year, he analyzed for the first time the characteristic staggered molecular structure of collagen fibrils, the precursor to level 1 bone.
In his newer research, he studied the molecular structure of the mineralized collagen fibrils that make up level 2 bone, hoping to find the mechanism behind bone’s strength, which is considerable for such a lightweight, porous material.
At the molecular level, the mineralized collagen fibrils are made up of strings of alternating collagen molecules and consistently sized hydroxyapatite crystals. These strings are “stacked” together in a staggered fashion such that the crystals appear in stair-step configurations. Weak bonds form between the crystals and molecules in the strings and between the strings.
When pressure is applied to the fabric-like fibrils, some of the weak bonds between the collagen molecules and crystals break, creating small gaps or stretched areas in the fibrils. This stretching spreads the pressure over a broader area, and in effect, protects other, stronger bonds within the collagen molecule itself, which might break outright if all the pressure were focused on them. The stretching also lets the tiny crystals shift position in response to the force, rather than shatter, which would be the likely response of a larger crystal.
More from MIT Press Office…
Image Caption: This image demonstrates that the weak bonds between collagen molecules and hydroxyapatite crystals break, leaving small gaps in the fabric without rending it entirely.