Sang Young Son, assistant professor in the University of Cincinnati College of Engineering, and associates are applying new technology, initially designed for NASA, to monitor particulate matter in the air, to try to understand the pathogenesis of respiratory disorders in the pediatric population:
The interdisciplinary research team–consisting of researchers at the UC colleges of Engineering and Medicine with collaborators at NASA Glenn Research Center in Cleveland and Washington University in St. Louis–plans to package condensate particulate counter sensors into miniature units utilizing microfluidics technologies that children can wear throughout the day. The team will integrate geographic information system technology developed at NASA into the sensors, allowing the exact location of specific exposures to be recorded…
Particles in the air on the order of one micron or less have the potential to initiate inflammatory and immune responses in human lungs. Because studies indicate that the effect might be cumulative, it’s important to understand more about the exposure of humans, especially children, to particulate matter in their everyday lives. Currently, understanding the potential impact of particulate matter on human health is limited by the lack of knowledge of individuals’ exposures to particle size and accumulation. Current sensors with the capability of detecting particles lack portability…
The difference between the older technology and this new development is similar to the difference between a cell phone and a landline: one goes with the person; the other ties the person to a certain location. “We can monitor every location, every individual,” says Son. Another major difference besides gravity is the size of the individual, as air particle densities vary with distance from the ground. “There’s a distinct particle difference by height,” Son notes.
During the first year of the grant, Washington University will be developing a device to cut test particles down to nano sizes with which the team will test the sensor. To be able to measure the sensor’s performance accurately, the researchers will need standard size particles. The second step of the grant is developing a condensation mechanism, where the air particles are condensed and collected. This is Son’s role. The third phase will be to develop an optical detection module to measure the particles that are collected in the sensor. Finally, they put the components of the system and test it. It is only after the second year that the exact shape of the sensor will have been derived. In the third year of the grant, the system will be calibrated and enhanced. Field testing will take place in the fourth year.
Once the wearable sensor technology has been successfully demonstrated, field tests will be with 8-year-old children participating in the University of Cincinnati Department of Environmental Health Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Data generated by these field tests will help the researchers identify areas where the children are exposed to the highest concentrations of particulates.
Press release: NIH Grant Brings Technology from Outer Space to Playgrounds …