Durham University is reporting that its scientists have patented a new technology to produce a 3D matrix for growth of many kinds of human cells, including stem cells. The university and a team of scientists behind the invention are planning to capitalize on this technology via a spin-out company ReInnervate Limited. Their growth medium is already showing its usefulness in the lab:
A large proportion of drugs fail at the testing stage, costing industry millions of pounds in research and development costs and failed drugs trials every year. At the moment, most drugs in development are first tested on cells grown in two-dimensions (2D) in standard laboratory equipment such as Petri dishes or flasks but cells in the human body form tissues and grow in more complex, three-dimensional ways.
The new study tested the toxic effect of a cancer drug called Methotrexate (MTX) on liver cells grown in three and two dimensions. Liver cells are frequently used in the drug development industry to test the toxicity of drugs and MTX is known to cause liver damage at high doses.
Tests showed that the structure and properties of the cells grown using the 3D scaffold were most similar to liver cells found in the human body, compared with the 2D cells which appeared “disorganised” when viewed under the microscope.
When subject to doses of MTX, cells grown in 2D died at very low concentrations, whereas 3D cells grown using the scaffold were far more robust and more accurately reflected the behaviour of cells in the human body when subjected to similar doses of the drug.
Dr Stefan Przyborski, a researcher with Durham University and Chief Scientific Officer of ReInnervate, has tested ten different tissue types on the scaffold, including bone, liver, fat and stem cells from bone marrow, and is marketing the product for commercial use.
The scaffold is made of highly porous polystyrene, is about the size of a ten pence piece and resembles a thin white disc. It has a structure resembling that of a sponge and is riddled with tiny holes which scientists are able to populate with cells which are then cultivated under laboratory conditions.
The technology has potential to be used to grow human stem cells for drug development. Their use may reduce the need for the tests on animals that are usually the next step before progressing to clinical trials in humans.
Another current use of the scaffold involves growing skin cells which are being used by the cosmetics industry to test cosmetics.
To learn more about the technology, head to the product page @ ReInnervate: Culture apparatus for three dimensional cell growth …
Press release: Cell growth technology promises more successful drug development …
Flashback: 3D Stem Cell Cultures in Self-Assembling Peptide Nanofiber Scaffolds