Scientists out of Stanford University analyzed brain activity of people listening to music, and came up with some interesting results. It turns out that brains respond to musical “movement transitions” with different brain networks.
“… the continuous stream of auditory information, represented by the uninterrupted musical score, is segmented into discrete movements by dynamically evolving responses in the neural machinery of the brain,” explains the caption in the Neuron, where the study was published.
In the analysis of the participants’ brain scans, the researchers focused on a 10-second window before and after the transition between movements. They identified two distinct neural networks involved in processing the movement transition, located in two separate areas of the brain. They found what they called a “striking” difference between activity levels in the right and left sides of the brain during the entire transition, with the right side significantly more active.
In this foundational study, the researchers conclude that dynamic changes seen in the fMRI scans reflect the brain’s evolving responses to different phases of a symphony. An event change – the movement transition signaled by the termination of one movement, a brief pause, followed by the initiation of a new movement – activates the first network, called the ventral fronto-temporal network. Then a second network, the dorsal fronto-parietal network, turns the spotlight of attention to the change and, upon the next event beginning, updates working memory.
“The study suggests one possible adaptive evolutionary purpose of music,” said Jonathan Berger, PhD, associate professor of music and a musician who is another co-author of the study. Music engages the brain over a period of time, he said, and the process of listening to music could be a way that the brain sharpens its ability to anticipate events and sustain attention.
According to the researchers, their findings expand on previous functional brain imaging studies of anticipation, which is at the heart of the musical experience. Even non-musicians are actively engaged, at least subconsciously, in tracking the ongoing development of a musical piece, and forming predictions about what will come next. Typically in music, when something will come next is known, because of the music’s underlying pulse or rhythm, but what will occur next is less known, they said.
Having a mismatch between what listeners expect to hear vs. what they actually hear – for example, if an unrelated chord follows an ongoing harmony – triggers similar ventral regions of the brain. Once activated, that region partitions the deviant chord as a different segment with distinct boundaries.
The results of the study “may put us closer to solving the cocktail party problem – how it is that we are able to follow one conversation in a crowded room of many conversations,” said one of the co-authors, Daniel Levitin, PhD, a music psychologist from McGill University who has written a popular book called This Is Your Brain on Music: The Science of a Human Obsession.
Abstract…
Press release: Music moves brain to pay attention, Stanford study finds …