A collaborative effort between a group of biomedical engineers and gastroenterologists at the Northwestern Medical School has resulted in what seems to be a potentially lifesaving test to detect early stages of pancreatic cancer. The newly developed technology relies on scanning a part of the duodenum around the Ampulla of Vater with an endoscope, and analyzing the returning light with low-coherence enhanced backscattering spectroscopy (LEBS).
The National Science Foundation explains:
Using novel light-scattering techniques, researchers have found the first evidence that early stage pancreatic cancer causes subtle changes in part of the small intestine. The easily monitored marker may ultimately allow early detection for a disease notorious for having few obvious symptoms, the primary reason pancreatic cancer killed more than 33,000 Americans last year.
The new detection techniques, developed with support from the National Science Foundation (NSF), produce an optic fingerprint from the altered tissue and then enhance the data for a clearer diagnosis.
The researchers scanned tissue samples from 19 people already diagnosed with pancreatic cancer and 32 without the disease. They properly distinguished patients with cancer at an accuracy approaching 100 percent. The clearest results came from patients in the earliest stages of the disease…
The results build upon prior studies with colon cancer and support the “field effect” hypothesis that suggests initial cancer stages, even pre-cancerous lesions, can cause minute, potentially detectable changes throughout an entire organ. If similar results are found in other organs, the effect could have broad impact in the timely treatment of breast cancer, lung cancer and others.
The team of engineers from Northwestern University in Evanston, Ill., and physicians from Evanston-Northwestern Healthcare (ENH), reported the findings in the Aug. 1, 2007, Clinical Cancer Research.
“This novel technology uses light to probe tissue architecture at submicron scale. We are excited about this technology because it enables sensing subtle changes in tissue that otherwise are undetectable by conventional microscopic examination,” said Northwestern engineer Vadim Backman, an NSF CAREER awardee who led the development of the new technologies and is a co-author on the research.
By studying tissue extracted from an area adjacent to the pancreas, the researchers were able to screen all 51 patients with little risk of inflammation or other complications.
While clinical use is perhaps three to five years in the future, and ongoing studies are needed to confirm the results, the researchers hope the tests can eventually be done without the biopsy.
Press release: Shining Light on Pancreatic Cancer …
Video: At the cellular level, tissue from the duodenum is identical from a patient with …