Increasing the accuracy of radiation therapy to selectively target cancerous tissue while simultaneously sparing healthy tissue is the goal of Dr. Xu’s 4D VIP-Man. Dr. Xu hopes his “virtual patient” will help oncologists account for patient’s breathing movements, and their affect on surrounding organs, during radiation treatments.
“Live patients are not static beings, and a moving organ such as the lung or heart is a main concern in radiation treatment or imaging of tumors that are affected by such organ movement,” Xu said. “In order to determine accurate and effective radiation dosages, doctors must consider such issues as the breathing function and air volume change that are affected by several physiological factors over the course of the radiation treatment.”
Real-time simulations could allow doctors to spot the small fractions of time when the lungs, liver, kidneys, and eventually the heart, are stationary relative to the external radiation beams. These opportune moments during the actual therapy mean that doctors will have more confidence delivering the radiation to a moving tumor.
“The 4-D VIP-Man will allow doctors and medical physicists to accurately predict and monitor these anatomical changes to provide the most effective treatment possible at any given time,” Xu said.
The fourth dimension of the VIP-Man is not easily achieved, according to Xu. Currently Xu and De are focusing their energy on respiratory function. “Using advanced computational tools, it is possible to simulate lung movement; however, not in real time,” De said. “For effective radiation therapy, physics-based real-time performance offers the ultimate solution.”
The key challenge in this project is to develop the algorithms that will make the virtual lungs and adjacent tissues move in real time according to realistic tissue biomechanical properties, De said.
Xu expects that the physics-based 4-D VIP-Man will eventually be used as an even more general anatomical modeling tool for the biomedical community to help patients with respiratory and cardiac diseases. At the same time, Xu will continue to work on the 3-D VIP-Man to create a “family” of virtual patients, ranging in ages and sizes, in collaboration with researchers worldwide through the Consortium of Computational Human Phantoms (virtual phantoms), co-founded by Xu.
Press release from Rensselaer Polytechnic Institute…