Fearing space bacteria and fungi, NASA scientists have developed a highly accurate hand held microorganism detection unit to monitor the health of astronauts and the shuttle.
You’re one of several astronauts homeward bound after a three-year mission to Mars. Halfway back from the Red Planet, your spacecraft starts suffering intermittent electrical outages. So you remove a little-used service panel to check some wiring.
To your unbelieving eyes, floating in midair in the microgravity near the wiring is a shivering, shimmering globule of
dirty water larger than a grapefruit. And on the wiring connectors are unmistakable flecks of mold.
That actually happened on the Russian space station Mir. When Mir was launched in 1986, “it was as clean as the International Space Station when it was launched,” recounted C. Mark Ott, health scientist at Johnson Space Center in Houston, Texas. And the cosmonauts aboard Mir (just like the astronauts from the U.S. and other nations aboard ISS) followed a regular schedule of cleaning all the space station’s surfaces to prevent the growth of bacteria and molds that could jeopardize human health.
In 1998, U.S. astronauts participating in the NASA 6 and NASA 7 visits to Mir collected environmental samples from air and surfaces in Mir’s control center, dining area, sleeping quarters, hygiene facilities, exercise equipment, and scientific equipment. Imagine their surprise when they opened a rarely-accessed service panel in Mir’s Kvant-2 Module and discovered a large free-floating mass of water. “According to the astronauts’ eyewitness reports, the globule was nearly the size of a basketball,” Ott said.
Nor was the water clean: two samples were brownish and a third was cloudy white. Behind the panels the temperature was toasty warm–82°F (28°C)–just right for growing all kinds of microbeasties. Indeed, samples extracted from the globules by syringes and returned to Earth for analysis contained several dozen species of bacteria and fungi, plus some protozoa, dust mites, and possibly spirochetes.
Enter, NASA’s Lab-On-A-Chip:
“The ability to monitor microorganisms would be especially important on long space voyages, not only to check the health of astronauts but also to monitor electronics and structural materials, which can be corroded or otherwise damaged by certain fungi and bacteria,” says Wainwright, the experiment’s principal investigator. LOCAD-PTS is designed so that “astronauts can do the analysis onboard with no need to return samples to laboratories on Earth.”
Astronaut Sunita “Suni” Williams opened the instrument kit bag, assembled LOCAD-PTS, and then took six readings. “The first two readings were controls to show that the instrument was operating correctly,” explains Jake Maule, LOCAD-PTS project scientist at the Carnegie Institution of Washington. “First she swabbed her palm, which she had first pressed to handrails and other often-handled surfaces that should have had lots of bacteria–and indeed, we got a strong positive reading,” he continues. “Then she sampled some ultraclean water in the instrument that is used to moisten samples, to check that the water was truly clean–and indeed, we got a great negative reading.”
Press release: Preventing “Sick” Spaceships
Press release: Lab on a Chip Works!
(via Technovelgy, /.)