Purdue University researchers are currently in the development stages of quick-solidifying scaffold materials specifically designed to be injected into damaged bones, spinal cord, and other tissues. Here is a scoop from Purdue University:
Because the material starts out as a liquid, it fills in the gaps between damaged or missing tissue before hardening into a gel, or “three-dimensional matrix” that eventually disintegrates as it is replaced by healthy tissue, said Alyssa Panitch, an associate professor in Purdue University’s Weldon School of Biomedical Engineering.
This gel could be loaded with time-released therapeutic drugs, such as “growth factors” needed to enhance healing. The approach also could be used to improve “drug-eluting stents,” which are metal scaffolds inserted into arteries to keep them open after surgeries to treat clogs. Once in place, the stents release therapeutic agents, but scientists have recently learned that the stents can cause new clogs, leading to heart attacks…
The technology could have several future applications, including controlled release of drugs and growth factors, which are used in wound healing, bone regeneration and other medical applications. Growth factors control cell behavior and are used to help bone grafts integrate with surrounding bone tissue. Controlling how strongly they bind to polysaccharides could enable researchers to develop gels that, when injected, would release therapeutic peptides over months, weeks, days or hours, depending on the application.
Press release: Research promises new wound-healing materials …