Biologist John Dunn at the U.S. Department of Energy’s Brookhaven National Laboratory with colleagues at Stony Brook University studied proteins of Borrelia burgdorferi, a bacterium responsible for Lyme disease. Now they think that their recently patented combination proteins could end up in a vaccine for this disease:
Scientists have been working on vaccines based on the structures of proteins found on the outer surface of Borrelia burgdoferi [sic], the bacterium that causes Lyme disease. Dunn and colleagues deciphered the atomic level structures of these proteins, known as outer surface proteins A and C (OspA and OspC), at the National Synchrotron Light Source (NSLS) at Brookhaven Lab. The OspA protein, which was used to make the original vaccine against Lyme disease, is only present in the bacteria while they are in the cold-blooded deer tick’s stomach, and not in the host. After the tick bites a warm-blooded mammalian host, the injected bacteria produce OspC on their surface.
With the aim of developing a vaccine that would trigger an immune response against both these life cycle stages, Dunn’s team used methods of recombinant DNA to create new proteins that combine the most immunogenic portions of OspA and OspC — that is, the regions of the two proteins that are most likely to trigger an immune response.
The researchers have demonstrated that the new combination proteins retain the ability to trigger an immune response to at least one or both of the antigens, and can trigger the production of antibodies that inhibit growth of and/or kill Borrelia bacteria in laboratory cultures. They’ve also shown that the chimeric proteins can be mass-produced in E. coli bacteria, a common laboratory technique for making proteins, and easily purified for possible use in vaccines or diagnostic assays.
“This could lead to a vaccine that is effective at different stages of the organism’s life cycle,” said Dunn.
Brookhaven NL’s Press Release: “Combination” Lyme Disease Vaccine Proteins Patented …