One of the many, many drawbacks to a life-sustaining dialysis is the energy-draining side effects that plaque the patients. But Dr. Van Geertruyden thinks he has found the answer in a very unlikely place . . . ceramic.
William Van Geertruyden, who holds three degrees in materials science and engineering from Lehigh, has developed a new type of dialysis filter that, he says, represents the first major breakthrough in 30 years for dialysis patients.
Van Geertruyden, who earned a Ph.D. from Lehigh in 2004, has filed a patent application on a ceramic filter that he believes is dramatically superior to the traditional polymer, or rubber-like, filter used in dialysis.
Last September, his company, EMV Technologies, LLC, received a $195,000 Small Business Technology Transfer grant from the National Institutes of Health (NIH) to verify the feasibility of the new filter. EMV, which is located in Bethlehem, has received smaller grants from the Pennsylvania Keystone Innovation Zone (KIZ) program and the Ben Franklin Technology Partners.
The new ceramic filter has the potential to make kidney dialysis much more efficient, says Van Geertruyden, and to reduce by 30 minutes to one hour the time required for a dialysis treatment.
Specifically, the new filter promises to double the amount of toxins removed during dialysis and to double the glomulellar filtration rate (GFR), or rate of toxin removal. GFR is 100 percent in a normal person but only 15 percent at best for a dialysis patient, a rate that has changed little in the past 30 years.
The ceramic filter’s secret, says Van Geertruyden, lies in its pores, which are organized in orderly rows and columns and which measure mere nanometers in diameter.
These nanopores, says Van Geertruyden, correspond more closely to the nano-sized toxins in the blood than do the larger pores of the standard dialysis filter. These polymeric pores vary in size and, when viewed with a microscope, appear in random arrangements of ovals, circles, slits and other shapes.
“Our goal is to double the amount of toxins removed during dialysis and to double GFR,” says Van Geertruyden. “We base our confidence on the superior porosity of our medium.
“If we can improve the efficiency of filtration, we can improve mortality rate and quality of life.”
Press release: A new, nanoporous ceramic filter offers hope to kidney-dialysis patients …