Leonid Moroz is utilizing sea slugs’ simplified nervous system consisting of only 10,000 neurons (versus the 100 billion in humans) as a model to study multiple neurodegenerative human diseases.
To find out the genetic conductors of such learning and memory, scientists led by Leonid Moroz of the University of Florida Whitney Laboratory for Marine Bioscience studied gene activity in the sea slug’s central nervous system, including genes known to switch on and off during a simple defensive maneuver–when the slug withdraws its gill.
Specifically they looked at the so-called transcriptome, a small percentage of genes that get copied to form molecules of ribonucleic acid (RNA). These molecules deliver directions for making proteins, which are key players in how cells operate.
They found specific genes linked to learning and memory. “We’ve now identified a whole bunch of receptors for serotonin. So we can see what their function is in various cells and which ones participate in the learning process,” Kandel told LiveScience.
The scientists also analyzed 146 human genes implicated in 168 neurological disorders, including Parkinson’s and Alzheimer’s diseases, and genes controlling aging. They found 104 counterpart genes in Aplysia, suggesting the animal will be a valuable tool in understanding and ultimately treating neurodegenerative diseases.
Article at Live Science . . .
Abstract . . .