Serious infection is the major complication in patients with burns. Researchers from the University of Cincinnati are tackling this problem by genetically modifying cultured skin grafts to fight bacterial infection:
Dorothy Supp, PhD, and her team found that skin cells that were genetically altered to produce higher levels of a protein known as human beta defensin 4 (HBD4) killed more bacteria than normal skin cells.
HBD4 is one in a class of proteins that exist throughout the body as part of its natural defense system. Researchers have only recently begun targeting these tiny molecules as a way to combat infections.
“If we can add these genetically modified cells to bioengineered skin substitutes, it would provide an important defense system boost during the initial grafting period, when the skin is most susceptible to infection,” explains Supp, an adjunct research associate professor at the University of Cincinnati (UC) and researcher at Cincinnati Shriners Hospital for Children.
Supp says defensins could become an effective alternative method for burn wound care and infection control. Using them in cultured skin substitutes, she adds, could also decrease a patient’s risk for infection, improve skin graft survival and reduce dependence on topical antibiotics.
UC researchers report these findings in the January issue of the Journal of Burn Care and Research…
In this three-year laboratory study, Supp isolated the HBD4 gene from donated tissue samples and transferred it into surface skin cells (keratinocytes) to give them enhanced infection-fighting abilities. These cells were then infected with pseudomonasaeruginosa, a type of bacteria found commonly in hospitals, and allowed to incubate. Analysis revealed that the genetically altered cells containing HBD4 were more resistant to microbial infections than the unaltered cells.
“If it proves effective in additional testing,” Supp predicts, “this type of gene therapy could be a promising alternative infection control method for burn wounds.”
Researchers hope to begin testing this approach in an animal model in early 2007.
Link…