“If we can’t get them out, we’ll breed them out.” This classic line from the movie Braveheart sums up the goal of entomologist at North Carolina State University. Fred Gould and his multi-national team hope to be able to breed genetically modified mosquitoes that are unable to carry diseases like malaria and dengue fever.
Eliminating the pests appears impossible. But scientists are attempting to re-engineer them so they cannot carry disease. If they manage that, they must create enough mutants to mate with wild insects and one day to outnumber them.
Researchers chasing this dream, including an N.C. State University entomologist, know they may court controversy. Genetically modified crop plants such as soybeans and corn have become common in the United States, but an altered organism on wings would be a first.
Critics of bio-engineering, especially in Europe, view some genetic alterations as unnatural, even monstrous. People fearful of so-called Frankenfood could sound similar alarms over Frankenbugs.
But with advances in molecular biology and millions of dollars from the Bill & Melinda Gates Foundation, this quest may be within reach. And its promise is huge, the scientists say.
“We’re looking at a timeline. But this is coming,” said Fred Gould, the NCSU insect expert.
Gould is working on the project with scientists on four continents. They landed $19.7 million under a Grand Challenges in Global Health grant offered by the Gates philanthropy and a National Institutes of Health foundation. The funders selected researchers ready to collaborate rather than compete on risky research aimed at solving massive health threats in poor places.
To try to build a less dangerous Aedes aegypti, scientists broke a huge job into smaller chunks. First, they needed a means to make female mosquitoes immune to dengue. Only females drink blood (males prefer nectar), and only insects infected with dengue can spread it.
A breakthrough this year at Colorado State University may help. Molecular biologists there stitched laboratory-made DNA into Aedes aegypti that blocks dengue from reproducing in a bug’s gut. That stops dengue from getting into mosquito saliva, which deposits the virus into human bloodstreams.
As important, the change sticks. Bugs pass the trait to their offspring.
“Things keep bearing fruit. So far, so good,” said Anthony James, a biologist at the University of California Irvine, the lead investigator for the mosquito project.
But inserting strings of DNA into laboratory mosquitoes and spreading them in the wild are two different things.
Scientists must convince the government and people of any country they approach that mutant bugs will fight disease without risk to people or the environment, said Sujatha Byravan, president of the Council for Responsible Genetics.
Scientists are trying to harness exotic genes to help slip dengue- fighting DNA into many offspring quickly. One way: piggyback onto so- called selfish genes — unusual stretches of DNA that perform no duties other than tending to their own survival.
If this worked as well as they say, someone better start rehearsing their Nobel Prize acceptance speech.
Full article at RedOrbit . . .