Growing 3-dimensional heart tissue in just four days at the Artificial Heart Laboratory sounds like the stuff of science fiction, but it’s reality for Ravi K. Birla, Ph.D at the University of Michigan.
It looks, contracts and responds almost like natural heart muscle — even though it was grown in the lab. And it brings scientists another step closer to the goal of creating replacement parts for damaged human hearts, or eventually growing an entirely new heart from just a spoonful of loose heart cells.
This week, University of Michigan researchers are reporting significant progress in growing bioengineered heart muscle, or BEHM, with organized cells, capable of generating pulsating forces and reacting to stimulation more like real muscle than ever before.
The three-dimensional tissue was grown using an innovative technique that is faster than others that have been tried in recent years, but still yields tissue with significantly better properties. The approach uses a fibrin gel to support rat cardiac cells temporarily, before the fibrin breaks down as the cells organize into tissue.
The U-M team details its achievement in a new paper published online in the Journal of Biomedical Materials Research Part A.
And while BEHM is still years away from use as a human heart treatment, or as a testing ground for new cardiovascular drugs, the U-M researchers say their results should help accelerate progress toward those goals. U-M is applying for patent protection on the development and is actively looking for a corporate partner to help bring the technology to market.
Ravi K. Birla, Ph.D., of the Artificial Heart Laboratory in U-M’s Section of Cardiac Surgery and the U-M Cardiovascular Center, led the research team.
“Many different approaches to growing heart muscle tissue from cells are being tried around the world, and we’re pursuing several avenues in our laboratory,” says Birla. “But from these results we can say that utilizing a fibrin hydrogel yields a product that is ready within a few days, that spontaneously organizes and begins to contract with a significant and measurable force, and that responds appropriately to external factors such as calcium.”
The new paper actually compares two different ways of using fibrin gel as a basis for creating BEHM: layering on top of the gel, and embedding within it. In the end, the layering approach produced a more cohesive tissue that contracted with more force — a key finding because embedding has been seen as the more promising technique.
Read more here . . .