Previously we’ve reported about new research in bone growth that employed mechanical and electrical stimulation to speed up the process. Now an international team of researchers led by Dr. Himanshu Jain have discovered yet another way to facilitate bone growth with the help of glass.
The specially fabricated glass, like the spongy interior of bone, contains interconnected pores that facilitate vascularization, the production of bone cells and the flow of blood and nutrients to all areas of the diseased or damaged bone.
The glass is porous at two scales, containing nanopores that measure up to 20 nanometers in diameter and macropores measuring 100 microns or wider. One nm equals one one-billionth of a meter, while one micron equals one one-millionth of a meter.
The dual porosity and the pores’ interconnectedness, say the researchers, enable the glass to mimic bone’s two vital functions. The nanopores facilitate cell adhesion and crystallization of bone’s structural components. The macropores allow bone cells to grow inside the glass and to vascularize, or form new blood vessels and tissue.
The international team contains researchers from Lehigh and Princeton Universities in the U.S., the University of Alexandria in Egypt, and the Instituto Superior Tecnico in Portugal, as well as from Senegal. It is headed by Himanshu Jain, director of the Lehigh-based International Materials Institute for New Functionalities in Glass (IMI-NFG), which is supported by the National Science Foundation.
Jain notes that the ideal treatment for diseased or damaged bone is to coax the body’s natural bone tissue to regrow. Doctors have learned to do this by taking a bone graft from one part of a person’s body and using it as a “scaffold” to stimulate bone tissue elsewhere to regrow. Likewise, biocompatible glasses have been used as bone transplants.
Until now, however, no one has succeeded in using glass as a bone scaffold.
The Lehigh-led research team says dual porosity will help its glass behave as an effective scaffold for bone regrowth.
“We believe our material will stimulate bone regeneration because cells will proliferate inside the scaffolding material and form tissues, thus facilitating the delivery of nutrients to regenerating bone tissue.”
Mohamed Ammar, a dentist and research scientist in the tissue-engineering lab at Alexandria’s Faculty of Dentistry, says the glass will induce proliferating cells in the regenerating bone to form a “matrix” around the scaffold.
“When you attach the glass to the damaged bone, a layer forms on the surface of the glass that has the same chemical composition as the natural bone. The bone cells come to this layer and attach to it, in effect forming a bone matrix around the glass.”
Full press release from Lehigh University . . .