Scientists from MIT and their Italian colleagues (University of Milan, University of Milan-Bicocca, and Fondazione Centro San Raffaele del Monte Tabor) are reporting a breakthrough in the ability of scientists to construct a 3D scaffolding medium in which to grow stem cells. As reported in the latest issue of PLoS One, investigators were able to grow a “healthy colony” of adult mouse stem cells in the construct made out of self-organising peptides:
Shuguang Zhang, associate director of MIT’s Center for Biomedical Engineering, is a pioneer in coaxing tiny fragments of amino acids called self-assembling peptides to organize themselves into useful structures. Working with visiting graduate student Fabrizio Gelain from Milan, Zhang created a designer scaffold from a network of protein nanofibers, each 5,000 times thinner than a human hair and containing pores up to 20,000 times smaller than the eye of a needle…
In addition to helping researchers get a more accurate picture of how cells grow and behave in the body, the new synthetic structure can provide a more conducive microenvironment for tissue cell cultures and tissues used in regenerative medicine, such as skin grafts or neurons to replace brain cells lost to injury or disease.
The scaffold itself can be transplanted directly into the body with no ill effects…
With the addition of defined amino acid fragments called active motifs, the scaffold can be fashioned to coax stem cells to behave in certain desirable ways-such as differentiating into needed body tissues or migrating toward bone marrow and other natural destinations.
“What makes these designer scaffolds particularly interesting is that cells survive longer and differentiate better without additional soluble growth factors,” Zhang said. “This suggests that extracellular microenvironments may play a more important role for cell survival and for carrying out cell functions than previously thought.”
The active motif method could be readily adapted to studying cell-to-cell interaction, cell migrations, tumor and cancer cell interaction with normal cells, cell-based drug testing and other diverse applications.
“I believe that in the next 20 years all cell cultures will be in 3D with the designer scaffolds, and most textbooks about cell biology will have to be revised when people obtain results from 3D cell culture studies,” Zhang said.