Pediatric cardiac surgeons at the Children’s Hospital of Philadelphia are using ‘4D MRI’, a technology co-developed by Georgia Tech and Emory University, to construct models of individual patients’ hearts to discover the most effective surgical correction based on a dynamic physiology of a congenital lesion.
The technology, known as image-based surgical planning and developed with the help of pediatric cardiologists and pediatric surgeons at The Children’s Hospital of Philadelphia (CHOP) and Emory University, creates a three-dimensional model of the child’s heart with data from the child’s MRI scans at different times in the cardiac cycle, also called a 4D MRI. The models allow surgeons to visualize the direction of blood flow and determine any energy loss in the heart. So if a surgeon were planning a certain correction to an area of a child’s heart, a model created by the system would show the surgeon how well blood would flow through the newly configured heart.
The goal of the Georgia Tech/Emory project is to create a complete system that allows surgeons to get a detailed look at the child’s heart functions with the new MRI system, design surgical procedures for optimum post-operative performance and evaluate the heart’s performance with a sophisticated blood flow computer simulation.
The work was presented this month at the American Heart Association’s Scientific Sessions meeting in Chicago and has been published in Circulation and the Annals of Thoracic Surgery.
While the program isn’t yet ready for use by surgeons outside the project, it could be available in about three to five years, Yoganathan said. [Ajit Yoganathan, Ph.D. is a co-principal investigator on the project and associate chair of Biomedical Engineering at Georgia Tech and Emory University –ed.]
The Georgia Tech/Emory team began work on a system to help surgeons address the unique challenges of Fontan repair. In essence, the system determines how any geometric change in the current heart configuration will change blood flow and strength.
To perfect their system, researchers combined computational and experimental studies to create a method of assessing an optimum vessel configuration. The group worked heavily with fluid dynamic studies in the lab to get the most accurate simulation of blood flow.
Another tool, developed by a team led by Jaroslaw Rossignac Ph.D. in Georgia Tech’s College of Computing, is a program that allows for manipulation of a 3-D model of a patient’s cardiovascular system to try out different configurations with a mouse. Once the surgeon has the desired configuration, the new vascular configuration can then be tested with the Image-based surgical planning system to see how well the new surgical procedure would perform.
Read more at Georgia Tech . . .
Check out the The Annals of Thoracic Surgery abstracts here and here . . .