Researchers from the Sandia National Laboratories have described a previously unrecognised mechanism of traumatic brain injury:
Research by a Sandia National Laboratories engineer and a University of New Mexico Health Sciences Center neurologist shows that brain injury may occur within one millisecond after a human head is thrust into a windshield as a result of a car accident.
This happens prior to any overall motion of the head following impact with the windshield and is a new concept to consider for doctors interested in traumatic brain injury (TBI).
Paul Taylor of Sandia’s Multiscale Computational Materials Methods Department and Corey Ford, neurologist at UNM’s Department of Neurology and MIND Imaging Center, made the discovery after modeling early-time wave interactions in the human head following impact with a windshield, one scenario leading to the onset of TBI…
The two researchers started by importing a digitally processed, computed tomography (CT) scan of a healthy female head into the Sandia-developed shock physics computer code, CTH. The CT scan was digitally processed to segment all soft tissue and bone into three distinct materials — skull, brain, and cerebral spinal fluid (CSF).
Computer models were then constructed representing the skull, brain, CSF, and windshield glass. The simulations were run on Sandia’s Thunderbird parallel architecture computer using 64 processors for each simulation.
“The results of our simulations demonstrate the complexities of the wave interactions that occur among the skull, brain, and CSF as the result of the frontal impact with the glass windshield,” Taylor says…
“Through our modeling we were able to predict early-time stress focusing within the brain during an impact event. However, we have yet to identify what specific levels of stress will lead to TBI,” Taylor says.
Link…