Remember as a kid the grow-up toys that you used to put in water and wait for them to get bigger? Well it turns out that the gel used to make these toys could have far-reaching medical and robotic applications. Here’s more from the University of Pittsburgh:
The way those gels change shape had never been theoretically examined, until now. Anna Balazs, Distinguished Professor and Robert von der Luft Professor in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh, and Victor Yashin, a postdoctoral researcher in the department, have formulated the first general model to study large-scale shape changes in responsive gels. Their results are published today in the prestigious journal Science.
Balazs and Yashin studied a unique class of polymer gels called Belousov-Zhabotinsky (BZ) gels. “They don’t need any external control-you put them in a bath of solution with some reagents, and they beat spontaneously like a heart,” said Balazs, who also is a researcher in Pitt’s Gertrude E. and John M. Petersen Institute of NanoScience and Engineering. The oscillation occurs because the gels contain a metal catalyst linked to the backbone of their polymer chain. The movement results in beautiful patterns that can be seen by the naked eye.
Such gels have potential as synthetic muscles-materials that can do active work. “You could make little autonomous devices for a couple hours and, when they stop running, add more reagent,” said Balazs. For example, the gels could be the artificial muscle for a micro-sized robot, or they could be used to deliver pulses of drugs to a patient.
Link. . .