A team of physicians and graduate engineering students on Monday helped a 14 year old boy suffering from epilepsy to become the first teenager to play a game with his mind.
Now, a St. Louis-area teenage boy and a computer game have gone hands-off, thanks to a unique experiment conducted by a team of neurosurgeons, neurologists, and engineers at Washington University in St. Louis.
The boy, a 14-year-old who suffers from epilepsy, is the first teenager to play a two-dimensional video game, Space Invaders, using only the signals from his brain to make movements.
The teenager had a grid atop his brain to record brain surface signals, a brain-machine interface technique that uses electrocorticographic (ECoG) activity – data taken invasively right from the brain surface. It is an alternative to a frequently used technique to study humans called electroencephalographic activity (EEG) – data taken non-invasively by electrodes outside the brain on the scalp. Engineers programmed the Atari software to interface with the brain-machine interface system.
Eric C. Leuthardt, M.D., an assistant professor of neurological surgery at the School of Medicine, and Daniel Moran, Ph.D., assistant professor of biomedical engineering, performed their research on the boy who had the grids implanted so that neurologists and neurosurgeons can find the area in the brain serving as the focus for an epileptic seizure, with hopes of removing it to avoid future seizures. To do this, the boy and his doctors, Dr Mathew Smyth and Dr John Zempel, had to wait for a seizure.
“He cleared out the whole level one basically on brain control,” said Leuthardt. “He learned almost instantaneously. We then gave him a more challenging version in two-dimensions and he mastered two levels there playing only with his imagination.”
In 2004, Leuthardt and Moran led a team who were the first to perform this research on four adult patients. They were anxious to get data from a teenager to see if there are any differences between how teens and adults operate.
“It’s exciting to be able to look at age differences and see what that tells us about the brain,” said Moran, who said the team plans to test more pediatric subjects. “No one has ever seen if brain signals from children are different. We’ll try to determine if teenagers have different frequency distributions when their cortex becomes active. We might question if the frequency alterations are different, will that make a difference in performance?”
Read more & see the video here . . .
Flashbacks: The Power of Thought; Brain-computer interface system: promising results; BrainGate Neural Interface System